

Seat	
No.	

M.Sc. (Part – I) (Semester – I) Examination, 2015 STATISTICS (Paper – III) (CGPA) (Old) Linear Algebra

Linear Alg	
Day and Date : Friday, 20-11-2015 Time : 10.30 a.m. to 1.00 p.m.	Total Marks : 70
Instructions: 1) Attempt five questions 2) Q. No. 1 and Q. No. 2 and 3) Attempt any three from 4) Figures to the right independent	are compulsory . n Q. No. 3 to Q. No. 7 .
1. A) Select the correct alternative :	
i) Let $V = \{x, y, z, x, y, z \in R\}$ be a vector	tor space then dimension of V is
A) 1	B) 2
C) 3	D) 0
ii) If A is an orthogonal matrix then	
A) $A = A^T$	B) $A = A^{-1}$
C) $A = -A^T$	D) $A = A^2$
iii) Let A be an idempotent matrix. Then t	he value of Max $\frac{X^TAX}{X^TX}$ is
A) 1	B) 0
C) -1	D) ∞
iv) Let A and B be non-singular square which of the following is true?	matrices of the same order. Then
A) Rank (A) > Rank (B)	B) Rank (A) < Rank (B)
C) Rank (A) \neq Rank (B)	D) Rank (A) = Rank (B)
v) Consider the following system of equ	uations :
x + y = 3, $x - y = 1$, $2x + y = 5$.	
The above system has	
A) Unique solution	B) No solution

C) More than one solution D) None of these

- B) Fill in the blanks:
 - i) The rank of a K × K orthogonal matrix is _____
 - ii) A superset of linearly dependent set of vectors is linearly _____
 - iii) If the trace and determinant of a 2×2 matrix are 5 and 6, then smallest characteristic root is ______
 - iv) Any square matrix can be written as sum of symmetric and _____

v) If
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then $M^{-1} = \underline{\hspace{1cm}}$

- C) State whether following statements are true or false:
 - I) A matrix $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ is positive definite matrix.
 - II) Every matrix has a unique g-inverse.
 - III) The symmetric matrix A of the quadratic form $(x_1 + x_2)^2$ is $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
 - IV) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $a \ne 0$, then $G = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & 0 \end{bmatrix}$ is always a g-inverse of A.

(5+5+4)

- 2. a) Answer the following:
 - a) Define vector space with illustration.
 - b) Define inverse of a matrix. Prove that $(AB)^{-1} = B^{-1}A^{-1}$.
 - b) Write short notes on the following:
 - a) Elementry operations on a matrix.
 - b) Moore-Penrose (MP) inverse. (6+8)
- 3. a) Define (I) Dimension of a vector space (II) Basis of a vector space. Prove that any two bases of vector space contain same number of vectors.
 - b) Define linearly independent and dependent set of vectors. Examine whether the following set of vectors is linearly independent.

$$a_1 = (1, 1, 2) a_2 = (2, 2, 3) a_3 = (1, 2, 3).$$
 (7+7)

- 4. a) Define and illustrate one example each, the folloiwng terms:
 - I) Rank of a matrix
 - II) Kroneckar product of two matrices
 - III) Skew symmetric matrix.
 - b) Let N be a non-singular matrix of order n partitioned as $N = \begin{bmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{bmatrix}$, where N_{22} is a non-singular matrix of order m (m < n). Obtain inverse of N. (6+8)
- 5. a) Define g-inverse of matrix. Show that \overline{A} is a g-inverse of A iff $A \overline{A} A = A$.
 - b) Show that a system of linear equations $A\underline{X} = b$ is consistent iff $\rho(A|b) = \rho(A)$. (6+8)
- 6. a) Define characteristic roots and vectors of a matrix show that the characteristic vector corresponding to the distinct characteristic roots of real symmetric matrix are orthogonal.
 - b) Prove Cayley-Hamilton theorem. Indicate how can be used to find inverse of a given matrix. (7+7)
- 7. a) Define a quadratic form. Give an example. Show that quadratic form is invariant under non-singular transformation.
 - b) Reduce the following quadratic form $x_1^2 + 2x_2^2 + 3x_3^2 2x_1x_2 + 2x_2x_3 2x_1x_3$ to canonical form and determine whether it is definite or indefinite. (7+7)

Seat	
No.	

M.Sc. (Part - I) (Sem. - I) Examination, 2015

STATISTICS (Paper – III) (Old) Linear Algebra				
Day and Date : Monday, 20-4	1-2015		Max. Marks : 70	
Time:11.00 a.m. to 2.00 p.m	1.			
iii) Atte	No. (1) and Q.No. empt any three q	(2) compulsory.	No. 3 to Q. No. 7 .	
1. A) Select the correct alto	ernative :			
i) If <u>X</u> and <u>Y</u> are line dependent if	early independen	t, then $\underline{X} + \alpha \underline{Y}$ an	d $\underline{X} + \beta \underline{Y}$ are linearly	
A) $\alpha = \beta$	B) $\alpha < \beta$	C) $\alpha > \beta$	D) $\alpha \neq \beta$	
ii) The characteristic	roots of a real sy	ymmetric orthogo	nal matrix are	
A) 0 or 1	B) -1 or 1	C) 0 or -1	D) None of these	
iii) The rank of $A = \begin{bmatrix} A & A \\ A & A \end{bmatrix}$	4 0 0 6 6 12 is 4 4 8			
A) 2	B) 1	C) 3	D) None of these	
iv) Let A be an idempotent matrix. Then the value of $\max_{X} \frac{X'AX}{X'X}$ is				
A) 0		B) 1		
C) Cannot be dete	ermined	D) None of these	Э	
v) The determinant then characteristic		2 matrix A are 12	2 and 8 respectively,	
A) 2 and 6	B) 3 and 4	C) 12 and 1	D) 8 and 1	

B) Fill in the blanks:

- i) If λ is characteristic root of A, then the characteristic root of (A + I) is _____
- ii) The dimension of the vector space $V = \{(x, y, x + 2y) \le x, y \in R\}$ is _____
- iii) The rank of a K × K orthogonal matrix is _____
- iv) The quadratic form $x_1^2 + x_2^2$ is _____ definite.
- v) The system of equations 2x + 2y = 6, x y = 1, 4x + 2y = 10 has _____ solution.

C) State true or false:

- i) Moore Penrose (M P) inverse is not unique.
- ii) A matrix $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ is positive semidefinite matrix.
- iii) P is an idempotent matrix if $P = P^2$.
- iv) The g-inverse of (1, 1, 1) is $(1, 1, 1)^T$. (5+5+4)
- 2. a) i) Define inverse of matrix. Find the inverse of matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.
 - ii) Obtain g-inverse of $\begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 2 \\ 2 & 0 & 4 \end{bmatrix}$.
 - b) Write short notes on the following:
 - i) Row and column space of a matrix.
 - ii) Classification of a quadratic form.

(6+8)

- 3. a) Define and illustrate giving one example each (i) Vector space (ii) Canonical form of a quadratic form.
 - b) Describe Gram-Schmidt orthogonalization process. Using this method obtain an orthogonal basis for R^2 starting with vector $a_1 = (2, 4)$ and $a_2 = (2, 8)$. (7+7)
- 4. a) Define rank of a matrix. Prove that rank (AB) \leq min {rank (A), rank (B)}.
 - b) Let X and Y be $\[\gamma \]$ -component linearly independent vectors. Show that X + $\[\alpha \]$ Y and X + $\[\beta \]$ Y are also linearly independent if $\[\alpha \neq \beta \]$. (7+7)

- 5. a) Define (i) trace of a matrix (ii) symmetric matrix (iii) skew-symmetric matrix. Give an example each.
 - b) Let A and B be two square matrices. Then prove or disprove AB and BA have the same characteristic roots. (7+7)
- 6. a) State and prove a necessary and sufficient condition for a system of linear equations AX = b to be consistent.
 - b) Examine for the definiteness of the quadratic form (i) $4x_1^2 4x_1x_2 + x_2^2 + x_3^2$

(ii)
$$\sum_{i=1}^{n} x_i^2$$
. (7+7)

- 7. a) Explain the spectral decomposition of a symmetric matrix. Give an illustration.
 - b) Prove that a necessary and sufficient condition for a quadratic form $\chi' A \chi$ to

be positive definite is that
$$\begin{vmatrix} a_{11-\cdots} & a_{1i} \\ \vdots \\ a_{i1-\cdots} & a_{ii} \end{vmatrix} > 0$$
 for $i = 1, 2, \ldots$ n. (7+7)

Seat	
No.	

M.Sc.(Semester - I) (CBCS) Examination Oct/Nov-2019

		Statistics LINEAR ALGE	BRA
		e: Tuesday, 05-11-2019 0 AM To 02:00 PM	Max. Marks: 70
Instr	uction	ns: 1) All questions are compulsory. 2) Figures to the right indicate full mar	ks.
 Q.1 Fill in the blanks by choosing correct alternatives given below. 1) Eigen values of an idempotent matrix are - 			
		a) -1 or 1 b) c) 2 or 1 d)	0 or 1 None of these
	2)	, ,	o be nilpotent if- A ^k = I None of these
	3)	, , , ,	s, $\rho(N)$ is rank of N then $\rho(N) \ge 3$ $\rho(N) \ge 5$
	4)	,	erse then AB = I None of these
	5)	, -	x are - off diagonal elements None of the these
	6)	The vector $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ is an Eigen vector of the recorresponding Eigen value is - a) 0 b)	natrix $\begin{bmatrix} 2 & 5 & 1 \\ 1 & 7 & -1 \\ 1 & 0 & 2 \end{bmatrix}$ then
 c) 2 d) 3 7) Let V be a vector space of all functions f(x) where f: R → R Then which of the following are subspace of V- A. The constant function B. The function with lim_{x→∞} f(x) = 3 		(x) where $f: R \to R$ e of V-	
		C. Function with $f(1) = 1$ D. If a) A, B, C and D b) c) B,C and D only d)	Function with $f(0) = 0$ A and D only B and D only
	8)	The column space of a non-singular mat a) 3 b) c) greater than 3 d)	rix N of order 3 has dimension - less than 3 None of these

	9)	A vector space is closed under the operation of a) addition and scalar multiplication b) addition and subtraction c) Division and multiplication d) None of these		
	10)	Let $A = \begin{bmatrix} 1 & 2 \\ 1 & 4 \end{bmatrix}$ then $A^{-1} = \underline{}$. a) $\frac{1}{2} \begin{bmatrix} 4 & -1 \\ -2 & 1 \end{bmatrix}$ b) $\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -1 & 1 \end{bmatrix}$ c) $\frac{1}{2} \begin{bmatrix} 1 & 4 \\ -1 & -2 \end{bmatrix}$ d) None of these		
	11)	Which of the following is an elementary row operation? a) $R_i \leftrightarrow R_j$ b) $k. R_i \rightarrow R_{i,k} \neq 0$ c) $R_i + k. R_j \rightarrow R_{i,i} \neq j$ d) All the above		
	12)	M is negative definite matrix if and only if all of its Eigen values are -		
		a) negative or positiveb) non positivec) negatived) None of these		
	13)	For a system of non-homogeneous equations $Ax = b$, it has solution if a) $\rho(A) = \rho(A:b)$ b) $\rho(A) < \rho(A:b)$ c) $\rho(A) \neq \rho(A:b)$ d) None of these		
	14)	The quadratic form $2X_1^2 + X_2^2$ is - a) positive definite b) negative definite c) positive semi definite d) negative semi definite		
Q.2	 a) Answer the following (any four): 1) Define algebraic and geometric multiplicity. 2) What is matrix of the quadratic form X₁² - 2X₂² - X₁X₁? 3) Define Subspace. Give an illustration. 4) Define Kronekar product. 5) Define Eigen value and Eigen vector. 			
	b)	 Write Notes on (Any Two) 1) Elementary matrix operations 2) Row space and column space of a matrix 3) Singular value decomposition 	06	
Q.3	 a) Answer the following (Any two) 1) What is definiteness of a quadratic form? 2) Describe procedure of obtaining of system of Non-homogeneous linear equations? 3) How to obtain inverse of partitioned matrix? 			
	b)	 Answer the following (Any One): 1) Prove that any given quadratic form can be transformed to a quadratic form which contains only square terms. 2) Show that rank of product of any two real matrices does not exceeds rank of either of the matrix. 	06	
Q.4	a)	 Answer the following (Any Two) State and prove Cayley Hamilton theorem. State and obtain necessary and sufficient condition for positive definiteness of a given quadratic form. Define g-inverse of a matrix. Write procedure to obtain g-inverse. 		

SLR-JS-368

b)	Ans	wer the following (Any One):	04
	1)	Let X, Y and Z are linearly independent vectors. Examine whether	
		U = X+Y, $V = Y+Z$ and $W = X+Z$ are linearly independent or not.	
	2)	Write a short note on Spectral decomposition.	
Ans	swer t	the following (Any Two)	14
a)	Prov	ve that any two linearly independent vectors in R^2 can form basis for R^2 .	
b)	Obta	ain A^3 and A^{-1} using Eigen value analysis, where $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$	

Obtain orthonormal basis from the vectors a = (2, 0, 3), b = (1, 1, 0) and c = (0, 2, 1) using Gram-Schmidt process of orthonomalization.

Q.5

Seat	
No.	

c) rank (G) = rank (A)

M.Sc. (Part – I) (Semester – I) Examination, 2015 STATISTICS (Paper – III) Linear Algebra (New CBCS)

Day and Date: Friday	, 20-11-2015		Total Marks : 70
Time: 10.30 a.m. to 1	.00 p.m.		
Instructions: 1	1) Attempt five questi	ons.	
2	2) Q.No. (1) and Q. N	o. (2) are compulso	ory.
3	3) Attempt any three	from Q. No. (3) to C). No. (7) .
4	f) Figures to the righ	t indicate full marks	i.
1. A) Select the correct	t alternative :		
1) Which of the fo	ollowing sets of vector	s are linearly depen	ident?
$S_1 = \{(1, 2), (3, 2$	$(S, 4)$, $S_2 = \{(1, 2), (3, 4)\}$	4), (5, 6)},	
$S_3 = \{(1, 2, 3),$	$(3, 4, 5)$, $S_4 = \{(1, 2)\}$, 3), (0, 0, 0)}	
	b) S ₂ and S ₄		d) S ₄ only
2) Let A be a mat	trix A^{-1} exists if and o	nly if A is a	matrix.
a) Non-singula	ar	b) Square	
c) Singular		d) Real symme	tric
3) The eigen valu	es of a triangular mat	rix are	
a) Zero and or	ne		
b) The diagon	al elements of the ma	trix	
c) The off-diag	gonal elements of the	matrix	
d) None of the	ese		
4) If G is a g-inve	rse of A, then		
a) rank (G) < r	ank (Δ)	b) rank (G) > ra	nk (A)

d) rank (G) \leq rank (AG)

 (1×5)

- 5) The quadratic form $x_1^2 + x_2^2$ is _____
 - a) Positive definite

- b) Negative definite
- c) Positive semi-definite
- d) Negative semi-definite

B) Fill in the blanks:

- 1) The dimension of the vector space $V_3 = \{(x, x, y) : x, y \in (-\infty, \infty)\}$ is
- 2) A set of n + 2 vectors in n-dimensional Euclidean space is always linearly
- 3) Let A be an m×n matrix then the system of linear equations Ax = 0 has non-trivial solution if and only if _____
- 4) The eigen vectors of a symmetric matrix corresponding to different eigen values are _____
- 5) The matrix associated with the quadratic form $2x_1^2 + 3x_1x_2$ is _____ (1x5)

C) State true or false:

- 1) Let A and B be the two matrices. Then rank $(A + B) \le \min \{ rank (A), rank (B) \}$.
- 2) G inverse of a nonsingular matrix is unique.
- 3) All the eigen values of a non-singular matrix are non-zero.
- 4) Let p and q be the numbers of positive and negative d' s in the quadratic

form
$$Q = \sum_{i=1}^{n} d_i x_i^2$$
, then Q is positive definite if and only if $p = n$. (1×4)

- 2. a) i) If X, Y, and Z are linearly independent vectors, examine whether U = X + Y, V = Y + Z, and W = X + Z are linearly independent.
 - ii) Prove or disprove that if λ is an eigen value of matrix A with corresponding eigen vector x then λ^m is an eigen value of A^m with corresponding eigen vector x for m = 2, 3, ... (3+3)

(4+4)

- - i) Singular value decomposition

b) Write short notes on the following:

- ii) Elementary row and column transformations of matrices.
- 3. a) Obtain orthonormal basis from the vectors a = (2, 0, 3), b = (1, 1, 0) and c = (0, 2, 1) using Gram-Schmidt process of orthogonalization.
 - b) Show that any set of n linearly independent vectors in n-dimensional Euclidean space forms a basis for n-dimensional Euclidean space. (7+7)
- 4. a) Let A and B be $m \times n$ and $n \times p$ matrices, respectively. Show that rank (AB) \leq min $\{rank(A), rank(B)\}$.
 - b) State and prove Caley-Hamilton theorem. (7+7)
- 5. a) Let $\lambda_1, \lambda_2,, \lambda_n$, be the characteristic roots of an n×n matrix A. Show that $|A| \prod_{i=1}^n \lambda_i \text{ and trace } (A) = \sum_{i=1}^n \lambda_i \text{ .}$
 - b) Show that if a real symmetric matrix A has eigen values 0 and 1 only then A is idempotent. (7+7)
- 6. a) Prove that matrix G is a g-inverse of matrix A if and only if AGA = A.
 - b) Consider a system of linear equations Ax = 0, where A is an m×n matrix of rank r(< n). Show that the number of linearly independent solutions to the system is n r. (7+7)
- 7. a) Prove that the definiteness of a quadratic form is invariant under nonsingular linear transformation.
 - b) Reduce the following quadratic form to a form containing only square terms $x_1^2 + x_3^2 + 4x_1x_3 + 8x_2 x_3$. (7+7)

- 5. a) Describe any four tests for convergence of series.
 - b) Show that the series $X + \frac{X^2}{2^l} + \frac{X^3}{3^l} + \dots$ converges absolutely for all values of x.
 - c) Show that for any fixed value of x, $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ is convergent. (8+3+3)
- 6. a) Define Riemann integral. Prove that every continuous function is integrable.
 - b) Find the radius of convergence of the following series.

i)
$$1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots$$

ii)
$$\times + \frac{\chi^2}{2!} + \frac{\chi^3}{3!} + \dots$$
 (8+6)

- 7. a) Find the minimum value of $x^2 + y^2 + z^2$ when x + y + z = 3a.
 - b) Show that the function $f(x) = x^2$ is uniformly continuous on [-1, 1].

c) Test the convergence of
$$\int_0^1 \frac{dx}{\sqrt{1-x^3}}$$
. (6+4+4)

Seat	
No.	

A) 1

B) 2

M.Sc. (Part – I) (Semester – I) Examination, 2015

	STATISTICS (Linear Algeb	· •	
Day and Date : Monday, 20-4-2	2015		Max. Marks : 70
Time: 11.00 a.m. to 2.00 p.m.			
Instructions: 1) Attempt	t five questions.		
2) Q.No. 1	and Q. No. 2 ar	re compulsory .	
3) Attemp	t any three fron	n Q. No. 3 to Q. No	o. 7 .
4) Figures	to the right ind	licate full marks.	
1. A) Select correct alternati	ve:		
i) The rank of $A = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$	0 0 3 6 2 4		
A) 1	B) 2	C) 3	D) None of these
ii) The characteristic o	of a real symmet	tric orthogonal ma	trix are
A) 0 and 1		B) -1 and 1	
C) -1 and 0		D) None of these	
iii) The quadratic form	$X_1^2 - X_2^2$ is		
A) Positive definite	e	B) Negative defir	nite
C) Indefinite		D) None of these	
iv) A square matrix A i	s called skew-s	ymmetric matrix if	
A) $A = A^T$	B) $A = A^{-1}$	C) $A = A^T A$	D) $A = -A^T$
v) Let $\bigvee = \{X, X, X \mid X\}$	$\in R \}$ be a vecto	r space then dime	nsion of V is

C) 3

D) None of the above

- B) Fill in the blanks:
 - I) If $A_{n \times n}$ is a non-singular matrix, then rank (A) = _____
 - II) The system of equation: 2x + 2y = 6, 3x y = 5, 2x + y = 5 has _____ solution.
 - III) If the trace and determinant of a 2×2 matrix are 10 and 16, then the largest characteristic root is _____
 - IV) The matrix A of the quadratic form $\chi_1^2 + X_2X_3$ is _____
 - V) The trace of a matrix is _____ of diagonal elements of a matrix.
- C) State whether the following statements are True or False:
 - I) If A is a positive semidefinite matrix then |A| is zero.
 - II) Let $A = [1, 2, 3]^T$ then $G = [1 \ 0 \ 0]$ is a g-inverse of A.
 - III) Moore-Penrose inverse is not unique.
 - IV) The symmetric matrix A of the quadratic form $(X_1 X_2)^2$ is $A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.
- 2. a) Answer the following:

(5+5+4)

- I) Discuss classification of quadratic form.
- II) Define Moore-Penrose inverse and state its properties.
- b) Write short notes on the following:
 - I) Choleskey decomposition.
 - II) Vector space and subspace.

(6+8)

- 3. a) Explain linearly independent set of vectors. Let X and Y be n-component linearly independent vectors. Show that $X + \alpha Y$ and $X + \beta Y$ are also linearly independent if $\alpha \neq \beta \neq 0$.
 - b) Describe Gram-Schmidt orthogonalization process using this construct an orthonormal basis for the vector space spanned \mathbf{a}_1 and \mathbf{a}_2 as given below

$$a_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $a_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$. (7+7)

Seat	
No.	

M.Sc. (Part – I) (Semester – II) Examination, 2015 STATISTICS (Paper - VII) Linear Models (New) (CGPA)

Day and Date: Thursday, 19-11-2015 Max. Marks: 70

Time: 10.30 a.m. to 1.00 p.m.

Instructions : 1) Attempt **five** questions.

- 2) Q. No. (1) and Q. No. (2) are compulsory.
- 3) Attempt any three from Q. No. (3) to Q. no. (7).
- 4) Figures to the **right** indicate **full** marks.
- 1. A) Select the correct alternative:
 - 1) In general linear model, $y = X\beta + \varepsilon$

 - a) rank[X'X, X'y] = rank[X'X] b) $rank[X'X, X'y] \le = rank[X'X]$
 - c) $rank[X'X, X'y] \ge = rank[X'X]$ d) rank[X'X, X'y] < rank[X'X]
 - 2) In one-way ANOVA model $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$; i = 1, 2,k; j = 1, 2,k; j = 1, 2,k; dimension of estimation space is
 - a) k-1
- b) n
- c) n_i 1 d) k
- 3) In two-way ANOVA model y $_{ij}=\mu+\alpha_{i}+\beta_{i}+\epsilon_{ij}$; i = 1, 2, ...p; j = 1, 2, ...q the test statistic for testing the equality of β'_i s has F distribution withd.f.
 - a) (p-1), (p-1) (q-1)
- b) (q-1), (p-1)(q-1)
- c) (p-1), pq-p-q+2 d) (p-1), pq-p-q-2
- 4) A balanced design is _____ connected.
 - a) sometimes
- b) always
- c) never
- d) generally

- 5) For a BIBD with usual notation, $\lambda(v-1) =$
 - a) k(r-1)
- b) k (r+1) c) r (k+1)
- d) r(k-1)

 (1×5)

B) Fill in the blanks:

- 1) In general linear model $y = X\beta + \epsilon$, the quantity XS^-X' is _____ under the choice of g-inverse of S = X'X.
- 2) In general linear model, $y = X\beta + \varepsilon$, $V(\lambda'\beta) =$
- 3) A connected block design can not be _____
- 4) A block design is _____ if and only if $CR^{-\delta}N = 0$.
- 5) The degrees of freedom of error SS in two-way without interaction ANOCOVA model with p rows, q columns, 1 observation per cell, and m covariate is _______ (1x5)

C) State true or false.

- 1) The degree of freedom of error SS in two-way ANOVA with interaction model with p rows and q columns and with one observation per cell is one.
- 2) In general linear model, any linear function of the LHS of normal equations is the BLUE of its expected value.
- 3) BIBD is not orthogonal.

- 2. a) i) Show that any solution of normal equations minimizes the residual sum of squares.
 - ii) Examine whether the following block design is connected.

$$B_1 = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}, \ B_2 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}, \text{ and } B_3 = \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix}.$$
 (3+3)

- b) Write short notes on the following:
 - i) Tuckey's test of non-additivity

- 3. a) Prove that in general model $y = X\beta + \in$, the BLUE of every estimable linear parametric function is a linear function of the LHS of normal equations, and conversely, any linear function of the LHS of normal equations is the BLUE of its expected value.
 - b) Prove that in general linear model $y = X\beta + \epsilon$, a necessary and sufficient condition for the estimability of a linear parametric function $\lambda'\beta$ is that $\lambda' = \lambda'H$, where $H = S^-S$, S = X'X. (7+7)
- 4. a) Derive the test for testing the hypothesis of the equality of treatment effects in one-way ANOVA model.
 - b) Describe two-way ANOVA without interaction model with one observation per cell and obtain the least square estimates of its parameters. (7+7)
- 5. a) Describe Tuckey's and Scheff's procedures of multiple comparisons.
 - b) Describe ANOCOVA model is general and obtain the least square estimates of its parameters. (7+7)
- 6. a) Derive a test for testing a general linear hypothesis in a general linear model.
 - b) prove that RBD is connected, orthogonal and balanced. (7+7)
- 7. a) State and prove a necessary and sufficient condition for orthogonality of a connected block design.
 - b) Prove that in a BIBD, the number of blocks is greater than or equal to the number of treatments. (7+7)

Seat	Set	Р
No.		_

M.Sc. (Semester – I) (CBCS) Examination March/April-2019 Statistics

	Statisti LINEAR ALG		
•	ate: Saturday, 27-04-2019 2:00 PM To 02:30 PM		Max. Marks: 70
Instruct	ions: 1) All questions are compulsory.2) Figures to the right indicate full	marks	
•	elect the correct alternative. If columns of a square matrix A are orth a) A is singular c) A is idempotent		14 onal
2)	Which of the following sets of vectors a $P = \{(2, 4), (1, 0)\}, Q = \{(1, 2, 3), (4, 5, 6)\}, S = \{(1, 1, 2), a\}$ Only P c) P,Q, and R	6)},	
3)	Null space a) has dimension zero b) contains no vector c) is a vector space d) contains only one vector (0,0,,0)		
4)	Row space and column space of a mat a) are the subspaces of a single comm b) always coincide c) are not vector spaces d) have the same dimension		
5)	(1, 2, 3)' has a) has no g-inverse c) two g-inverses	b) the unique g-inversed) three g-inverses	
6)	If G is a g-inverse of matrix A , then a) rank (A) ≤ rank(G) c) rank (A) = rank(G)	b) rank (A) ≥ rank(A) d) rank (G AG) < rank(A)	
7)	Let A be a 3x3 matrix. A necessary and non-trivial solution to the system of line a) rank $(A) = 3$ c) rank $(A) \le 2$		
8)	Elementary row operation a) does not change rank of a matrix b) is essentially post-multiplying the give c) is essentially pre-multiplying the give d) none of A, B, C	-	•
9)	The eigen values of a triangular matrix a) the diagonal elements of the matrix b) the off-diagonal elements of the matrix c) zero and one d) none of A, B, C		

	10) Let A be a square matrix of order n. Then, the maximum number of linearly independent vectors in the eigen space of A corresponding to its eigen value λ is			
		a) $n - \text{rank}(A)$ c) $n - \text{rank}(\lambda A)$	b) $n - \text{rank}(A - \lambda I)$ d) $\text{rank}(A - \lambda I)$	
	á	The characteristic polynomial of matrix a) cannot be known c) A	A is λ^4 - 1. Then, $A^4 = $ b) I d) λA	
	t	A 2x2 matrix has 2 and 3 in the first row the characteristic polynomial $p(\lambda)$ is a) $\lambda^2 - 3\lambda + 2$ c) $\lambda^2 + 3$		
	13)	The quadratic form $x_1^2 + x_2^2$ is a) positive definite c) positive semi-definite	b) negative definited) negative semi-definite	
	i 1	Caley-Hamilton theorem can be used to obtain inverse of a matrix objected definiteness of a quadration characteristic roots of a matrix do none of A, B, C		
Q.2	A)	Answer the following. (Any four) 1) What is inverse of $\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$		80
		 What is livelse of [1 3] Define G-inverse. What is characteristic value proble Let l' = (l₁, l₂) and x' = (x₁, x₂) the the quadratic form (l'x)²? State a necessary and sufficient cobe positive definite. 	en what is the matrix associated with	
	B)	Write Notes on. (Any Two)1) Vector space2) Kronecker product3) Algebraic and geometric multiplicit	ies of a characteristic root of a matrix	06
Q.3	A)	 Answer the following. (Any two) Prove that any subset of a linearly independent. Show that rank of sum of two matr ranks. Prove or disprove that if λ is an eigcorresponding eigen vector x then 	ices cannot exceed sum of their Jen value of matrix A with	08
	B)	corresponding eigen vector x for many corresponding eigen ei		06
	<i>5</i> ,	 Show that every basis for n-dimen exactly n vectors. Show that any quadratic form can only square terms. 		00

SLR-ES-366

Q.4	A)	Answer the following			
			[2	2	4]
		1) Find a g-inverse of	2	5	8
			l1	7	1]

- 2) Show that if a real symmetric matrix **A** has eigen values 0 and 1 only, then **A** is idempotent.
- 3) Prove that the definiteness of a quadratic form is invariant under nonsingular linear transformation.

Answer the following. (Any one)

04

10

- 1) Show that any square matrix can be expressed as the sum of a symmetric and a skew-symmetric matrices.
- 2) If **A** and **B** are square matrices of order n, show that $rank(\mathbf{AB}) \ge rank(\mathbf{A}) + rank(\mathbf{B}) - n$.

Answer the following. (Any two) Q.5

14

1) Given a basis $\{a_1, a_2, \dots, a_n\}$ for n-dimensional space and a non-null vector **b** in *n*-dimensional space, show that if any vector a_i for which $\alpha_i \neq 0$ in the

representation of \boldsymbol{b} as $\boldsymbol{b} = \sum_{i=1}^{n} \alpha_i a_i$ is replaced from $\{\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n\}$ by \boldsymbol{b} ,

then the new set is also a basis for n-dimensional space.

2) Let $\lambda_1, \lambda_2, \dots, \lambda_n$, be the characteristic roots of an n×n matrix A. Show that

 $|\pmb{A}| = \prod_{i=1}^{n} \lambda_i$ and trace $(\pmb{A}) = \sum_{i=1}^{n} \lambda_i$

3) Obtain spectral decomposition of $\mathbf{A} = \begin{bmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 1 \end{bmatrix}$ and hence find \mathbf{A}^4

SLR-MB – 605

Total Marks: 70

Coot			

Seat	
No.	

M.Sc. (Part – I) (Semester – I) Examination, 2016 STATISTICS (Paper – III) Linear Algebra (New CBCS)

Day and Date: Saturday, 2-4-2016

Time: 10.30 a.m. to 1.00 p.m.

Instructions: 1) Attempt five questions.

- 2) Q.No. (1) and Q.No. (2) are compulsory.
- 3) Attempt any three from Q.No. (3) to Q.No. (7).
- 4) Figures to the right indicate full marks.
- 1. A) Select the correct alternative:
 - 1) Which of the following statements are true?
 - I. A single null vector always forms a linearly dependent set of vectors.
 - II. A single non-null vector not necessarily form a linearly dependent set of vectors.
 - III. A set of vectors consisting of a null vector can be linearly independent.
 - A) Only I

B) All I, II and III

C) I and III

- D) II and III
- 2) Let A and B be the two matrices. Then, _____
 - A) $rank (A + B) \le rank (A) + rank (B)$
 - B) rank(A + B) = rank(A) + rank(B)
 - C) rank $(A + B) \ge rank (A) + rank (B)$
 - D) rank $(A + B) \le min \{rank (A), rank (B)\}$
- 3) The eigen values of 2×2 matrix A are 2 and 6. Then, _____
 - A) | A | = 8

B) trace (A) = 12

C) | A | = 12

D) trace(A) = 4

	4)	is not a g-inverse of [1 2 3].
		A) (1 0 0)'	B) (0 1/2 0)'
		C) (0 0 1/3)'	D) (1/2 0 0)'
	5)	The quadratic form $(x_1 + x_2)^2$ is _	
		A) positive definite	B) negative definite
		C) positive semi-definite	D) negative semi-definite (1x5)
B)	Fill	in the blanks :	
	1)	Let A and B be the two matrice matrix.	s. Then, rank (AB) = rank(A) if B is a
	2)	•	er n. The maximum number of linearly a space of A corresponding to its eigen
	3)		y independent solutions to a system of is a 3×5 matrix of rank 3 is
	4)	g-inverse of a matrix is a	ınique.
	5)	The matrix associated with the qu	uadratic form x ₁ x ₂ is (1×5
C)	Sta	ate true or false .	
	1)	A subset of linearly dependent se	t of vectors can be linearly independent.

- 2) If λ is an eigen value of matrix A then $c\lambda$ is also an eigen value of A, where c is any constant.
- 3) Moore-Penrose inverse is also a g-inverse.
- 4) Let p and q be the numbers of positive and negative d_i 's in the quadratic form $Q = \sum_{i=1}^{n} d_i x_i^2$, then Q is non-negative definite if and only if q = 0. (1×4)
- 2. a) i) Prove that a matrix is singular if and only if zero is one of its eigen value.
 - ii) Show that the system of linear equations Ax = 0 has non-trivial solution if and only if rank of A is less than the number of columns of A. (3+3)

- b) Write short notes on the following.
 - i) Gram-Schmidt process of orthogonalization.
 - ii) Elementary row and column transformations of matrices. (4+4)
- 3. a) Prove that a set of vectors $\{a_1, a_2, ..., a_k\}$ is linearly dependent if and only if any vector in that set can be expressed as a linear combination of the rest.
 - b) Show that every basis for n-dimensional Euclidean space contains exactly n vectors. (7+7)
- 4. a) Find A^{-1} and A^{5} using Caley-Hamilton theorem, where $A = \begin{bmatrix} 1 & 0 \\ -2 & 3 \end{bmatrix}$.
 - b) Let A and B be $m \times n$ and $n \times p$ matrices, respectively. Show that $rank(AB) \ge rank(A) + rank(B) n$. (7+7)
- 5. a) Explain the computation of the inverse of higher order matrix by partitioning.
 - b) Obtain spectral decomposition of $A = \begin{bmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 1 \end{bmatrix}$ and hence find A^4 . (7+7)
- 6. a) Find g-inverse of matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 1 & 2 & 0 & 1 \end{bmatrix}$.
 - b) Show that if a real symmetric matrix A has eigen values 0 and 1 only then A is idempotent. (7+7)
- 7. a) Prove that the definiteness of a quadratic form is invariant under nonsingular linear transformation.
 - b) Prove that a real quadratic form x'Ax in n variables is positive definite if and only if

$$g_i > 0, i = 1, 2, ..., n \text{ where } g_i = \begin{vmatrix} a_{11} & a_{11} & \cdots & a_{11} \\ a_{11} & a_{11} & \cdots & a_{11} \\ \vdots & \vdots & & \vdots \\ a_{11} & a_{11} & \cdots & a_{11} \end{vmatrix}.$$
 (7+7)

Seat	
No.	

M.Sc. (Part - I) (Sem. - I) Examination, 2015

STATISTICS (Paper – III) (Old) Linear Algebra				
Day and Date : Monday, 20-4	1-2015		Max. Marks : 70	
Time:11.00 a.m. to 2.00 p.m	1.			
iii) Atte	No. (1) and Q.No. empt any three q	(2) compulsory.	No. 3 to Q. No. 7 .	
1. A) Select the correct alto	ernative :			
i) If <u>X</u> and <u>Y</u> are line dependent if	early independen	t, then $\underline{X} + \alpha \underline{Y}$ an	d $\underline{X} + \beta \underline{Y}$ are linearly	
A) $\alpha = \beta$	B) $\alpha < \beta$	C) $\alpha > \beta$	D) $\alpha \neq \beta$	
ii) The characteristic	roots of a real sy	ymmetric orthogo	nal matrix are	
A) 0 or 1	B) -1 or 1	C) 0 or -1	D) None of these	
iii) The rank of $A = \begin{bmatrix} A & A \\ A & A \end{bmatrix}$	4 0 0 6 6 12 is 4 4 8			
A) 2	B) 1	C) 3	D) None of these	
iv) Let A be an idemp	ootent matrix. The	en the value of ma X	$\frac{X'}{X'} \frac{X'}{X'}$ is	
A) 0		B) 1		
C) Cannot be dete	ermined	D) None of these	Э	
v) The determinant then characteristic		2 matrix A are 12	2 and 8 respectively,	
A) 2 and 6	B) 3 and 4	C) 12 and 1	D) 8 and 1	

B) Fill in the blanks:

- i) If λ is characteristic root of A, then the characteristic root of (A + I) is _____
- ii) The dimension of the vector space $V = \{(x, y, x + 2y) \le x, y \in R\}$ is _____
- iii) The rank of a K × K orthogonal matrix is _____
- iv) The quadratic form $x_1^2 + x_2^2$ is _____ definite.
- v) The system of equations 2x + 2y = 6, x y = 1, 4x + 2y = 10 has _____ solution.

C) State true or false:

- i) Moore Penrose (M P) inverse is not unique.
- ii) A matrix $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ is positive semidefinite matrix.
- iii) P is an idempotent matrix if $P = P^2$.
- iv) The g-inverse of (1, 1, 1) is $(1, 1, 1)^T$. (5+5+4)
- 2. a) i) Define inverse of matrix. Find the inverse of matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.
 - ii) Obtain g-inverse of $\begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 2 \\ 2 & 0 & 4 \end{bmatrix}$.
 - b) Write short notes on the following:
 - i) Row and column space of a matrix.
 - ii) Classification of a quadratic form.

(6+8)

- 3. a) Define and illustrate giving one example each (i) Vector space (ii) Canonical form of a quadratic form.
 - b) Describe Gram-Schmidt orthogonalization process. Using this method obtain an orthogonal basis for R^2 starting with vector $a_1 = (2, 4)$ and $a_2 = (2, 8)$. (7+7)
- 4. a) Define rank of a matrix. Prove that rank (AB) \leq min {rank (A), rank (B)}.
 - b) Let X and Y be $\[\gamma \]$ -component linearly independent vectors. Show that X + $\[\alpha \]$ Y and X + $\[\beta \]$ Y are also linearly independent if $\[\alpha \neq \beta \]$. (7+7)

- 5. a) Define (i) trace of a matrix (ii) symmetric matrix (iii) skew-symmetric matrix. Give an example each.
 - b) Let A and B be two square matrices. Then prove or disprove AB and BA have the same characteristic roots. (7+7)
- 6. a) State and prove a necessary and sufficient condition for a system of linear equations AX = b to be consistent.
 - b) Examine for the definiteness of the quadratic form (i) $4x_1^2 4x_1x_2 + x_2^2 + x_3^2$

(ii)
$$\sum_{i=1}^{n} x_i^2$$
. (7+7)

- 7. a) Explain the spectral decomposition of a symmetric matrix. Give an illustration.
 - b) Prove that a necessary and sufficient condition for a quadratic form $\chi' A \chi$ to

be positive definite is that
$$\begin{vmatrix} a_{11-\cdots} & a_{1i} \\ \vdots \\ a_{i1-\cdots} & a_{ii} \end{vmatrix} > 0$$
 for $i = 1, 2, \ldots$ n. (7+7)

Seat	
No.	

M.Sc. (Part – I) (Semester – I) Examination, 2014 STATISTICS (Paper – III) Linear Algebra

	•	
Day and Date : Friday, 25-4-2014 Time : 11.00 a.m. to 2.00 p.m.		Total Marks : 70
Instructions: 1) Attempt five question 2) Q. No. 1 and Q. No. 3) Attempt any three in 4) Figures to the right	. 2 are compulsory . from Q. No. 3 to Q. No. 7 .	
1. A) Select the correct alternative :		
1) A set of vectors containing a nul	Il vector is	
a) Not necessarily dependent	b) Necessarily dependen	t
c) Necessarily independent	d) A vector space	
2) Let A be a matrix. A^{-1} exists if a	nd only if A is a	matrix.
a) Non-singular	b) Square	
c) Singular	d) Real symmetric	
3) The eigen values of 2×2 matrix	x A are 2 and 6. Then	
a) A = 8	b) trace (A) = 12	
c) A = 12	d) trace $(A) = 4$	
4) is not a g-inver	rse of [1 2 3].	
a) (1 0 0) [′]	b) (0 1/2 0) [']	
c) (0 0 1/3)	d) $(1/2 \ 0 \ 0)'$	
5) The quadratic form $-x_1^2 - 2x_2^2$ i	is	
a) Positive definite	b) Negative definite	
c) Positive semi-definite	d) Negative semi-definite	(1×5)

B) Fill in the blanks:

- A basis for n-dimensional Euclidean space contains _____

 vectors.
- 2) Let A be a square matrix of order n. The maximum number of linearly independent vectors in the eigen space of A corresponding to its eigen value λ is ______
- 3) g-inverse of matrix A is unique if A is _____
- 4) The matrix associated with the quadratic form $x_1 x_2$ is ______
- 5) A system of linear equations Ax = b is said to be homogeneous if

 (1x5)

C) State true or false:

- 1) A set of (n + 1) vectors in n-dimensional Euclidean space is linearly dependent.
- 2) If λ is an eigen value of matrix A then $c\lambda$ is also an eigen value of A, where c is any constant ?
- 3) Moore-penrose inverse is unique.
- 4) Let p and q be the numbers of positive and negative dis in the quadratic

form
$$Q = \sum_{i=1}^{n} d_i x_i^2$$
, then Q is positive definite if and only if $p = n$. (1x4)

- 2. a) i) Examine whether the vectors a = (3, 5, -4), b = (2, 7, -8) and c = (5, 1, -4) are linearly independent.
 - ii) Prove that a matrix is singular if and only if zero is one of its eigen value. (3+3)
 - b) Write short notes on the following:
 - i) Elementary row and column transformations of matrices
 - ii) System of linear equations. (4+4)

- 3. a) Show that any set of n linearly independent vectors in n-dimensional Euclidean space forms a basis for n-dimensional Euclidean space.
 - b) Show that any subset of size (n-1) of the set of vectors n vectors $\{x_1, x_2, ..., x_n\}$ in n-dimensional Euclidean space is linearly independent, where

$$x_1 = (1, -1, 0, 0, ..., 0),$$

 $x_2 = (1, 0, -1, 0, ..., 0),$
 $x_3 = (1, 0, 0, -1, ..., 0),$
 \vdots
 $x_{n-1} = (1, 0, 0, ..., -1),$ and
 $x_n = (n-1, -1, -1, ..., -1).$ (7+7)

- 4. a) Let A and B be $m \times n$ and $n \times p$ matrices, respectively. Show that rank (AB) $\leq \min \{ rank (A), rank (B) \}$.
 - b) Prove that row rank of a matrix is same as its column rank. (7+7)
- 5. a) Find A⁻¹ and A⁵ using Caley-Hamilton theorem, where $A = \begin{bmatrix} 1 & 0 \\ -2 & 3 \end{bmatrix}$.
 - b) Prove or disprove that if λ is an eigen value of matrix A with corresponding eigen vector x then λ^m is an eigen value of A^m with corresponding eigen vector x for m = 2, 3, ...
 - c) Show that the eigen values of an idempotent matrix are either 0 or 1. (6+4+4)
- 6. a) Consider a system of linear equations Ax = 0, where A is an m × n matrix of rank r (< n). Show that the number of linearly independent solutions to the system is n r.
 - b) If matrix A is such that A = A'A, show that A is symmetric and idempotent.
 - c) If G is g-inverse of matrix A, show that $G_1 = GAG$ is also a g-inverse of A. (7+4+3)
- 7. a) Prove that the definiteness of a quadratic form is invariant under non-singular linear transformation.
 - b) Examine whether the following quadratic form is positive definite

$$x_1^2 + x_2^2 + 2x_3^2 + 2x_2x_3$$
 (7+7)
