[Total No. of Pages :3

Seat No.

## B.C.S. (Part - I) (SEM-II) Examination, 2013 STATISTICS

# Continuous Probability Distributions and Testing of Hypothesis (Paper -IV)

|                 | and Testing of Hypoth                                            | nesis (Paper -IV)          |                  |
|-----------------|------------------------------------------------------------------|----------------------------|------------------|
|                 | Sub. Code                                                        | : 48218                    |                  |
|                 | Friday, 26 - 04 - 2013                                           | ·<br>                      | Total Marks: 40  |
| Гіте : 3.00 р.г | п. то 3.00 р.ш.                                                  |                            |                  |
| Instructions:   | 1) All questions are compuls                                     |                            |                  |
|                 | 2) Figures to the right indica                                   | te full marks              | a                |
|                 | 3) Use of calculators and sta                                    | itistical tables is allowe | [8]              |
|                 | ne correct alternatives.                                         |                            | [-]              |
|                 | If $f(x) = \begin{cases} Kx^3 & o < x < 1 \\ 0 & ow \end{cases}$ | 11" > "                    |                  |
| i)              | If $f(x) = \begin{cases} 0 & ow \end{cases}$                     |                            | .*.              |
|                 | - 81 0                                                           |                            |                  |
|                 | is a pdf, then the value of K                                    | is                         |                  |
|                 | a) $\frac{1}{4}$ b) 4 c) 1                                       |                            |                  |
| ii)             | Which of the following cont property                             |                            |                  |
|                 | a) normal b) uniform                                             | c) exponential             | d) none of these |
| iii)            | If r. v. x has t distribution and uariance of x are              | with 5 degrees of fro      | eedom, then mean |
|                 | a) 0 and $\frac{5}{3}$ b) 5 and 10                               | c) $\frac{5}{3}$ and 0     | d) none of these |
| iv)             | F variate has range<br>a) $(-\infty,\infty)$ b) $(0,1)$          | c) (-1, 1)                 | d) (0,∞)         |
| v)              | Reject Ho when Ho is true                                        | is                         |                  |
| *)              | a) Type I error                                                  | b) Type                    |                  |
|                 | c) Not committing error                                          | d) None                    | of these         |

|     | vi)   | A null hypothesis is a                                                                                                             |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------|
|     |       | a) Hypothesis of interest b) Hypothesis of no difference                                                                           |
|     |       | c) Hypothesis which is simple d) None of these                                                                                     |
|     | vii)  | If X has expohential variate with mean $\frac{1}{\theta}$ , then variance of X is                                                  |
|     |       | a) $\theta$ b) $\theta^2$ c) $1/\theta$ d) $1/\theta^2$                                                                            |
|     | viii) | If X ~N (0,1) then X² has the distribution                                                                                         |
|     |       | a) chi- square b) t c) F d) none of these                                                                                          |
| Q2) | Atte  | empt any two [16]                                                                                                                  |
|     | a)    | Explain the terms                                                                                                                  |
|     |       | i) Continuous random variable                                                                                                      |
|     |       | ii) Expectation of continuous random variable                                                                                      |
|     |       | iii) Probability density function of continuous random variable                                                                    |
|     |       | iv) Cumulative densify function of continuous random variable.                                                                     |
|     | b)    | Define students t distribution. State mean and variance of t distribution.  Also state the normal approximation of t distribution. |
|     | c)    | Explain large sample test for testing                                                                                              |
|     |       | i) $H_0: \mu = \mu_0$ $v/s$ $H_1: \mu \neq \mu_0$                                                                                  |
|     |       | ii) $H_0: P=P_0$ $v/s$ $H_1: P \neq P_0$                                                                                           |
| Q3) | Att   | empt any four [16]                                                                                                                 |
|     | a)    | Let x be continuous random variable having pdf                                                                                     |
|     |       | $f(x) = \begin{cases} Kx(1-x) & 0 < x < 1 \\ 0 & ow \end{cases}$                                                                   |
|     |       | Find K and mean of X                                                                                                               |

- Define normal distribution . State important properties of normal distribution
- c) Define chi-square distribution. State its mean and variance.
- d) State merits and demerits of simulation.
- e) Define the terms parameter and statistic
- f) Let  $X_i \sim iid N(0,1)$ , i = 1,2,...,6. Then find the distribution of

動 鬱 鶴

$$\frac{X_1^2 + X_2^2 + X_3^2}{X_4^2 + X_5^2 + X_6^2}$$

Total No. of Pages: 3

| Seat |  |
|------|--|
| No.  |  |
|      |  |

# B.C.S. (Part - I) (Semester - II) Examination, 2013

|      | B.C.S. (Part - 1) (Semester - 11) Extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                            |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------|--|--|--|
| (    | STATISTICS (Paper - IV)  Continuous Probability Distribution and Testing of Hypothesis  Sub. Code: 58181  Total Marks: 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                            |  |  |  |
|      | and Date : Monday, 06 - 05 - 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40      | Total Marks                                |  |  |  |
| Time | e: 3.00 p.m. to 5.00 p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                            |  |  |  |
| In   | structions: 1) All questions are compulso  2) Use of calculator and statis  3) Figures to the right in the b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | able is allowed.<br>t indicate full marks. |  |  |  |
|      | in the second se |         | [10]                                       |  |  |  |
| Q1)  | Choose the correct alternative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 16    | ) is                                       |  |  |  |
|      | a) Cumulative distribution function (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c.a.1.  | constant                                   |  |  |  |
|      | i) non decreasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ii)     | none of these                              |  |  |  |
|      | iii) decreasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10)     | form distribution over [a, b] then         |  |  |  |
|      | <ul><li>b) If X is a random variable following</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g unii  | omi distribution over [4, 4]               |  |  |  |
|      | the $Var(X) = \underline{\hspace{1cm}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                            |  |  |  |
|      | i) $\frac{b-a}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                            |  |  |  |
|      | iii) $\frac{(b-a)^2}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iv)     | $\frac{(b+a)^2}{12}$                       |  |  |  |
|      | c) If the pdf of variable X is $f(x) = Kx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c(2 – . | x); $0 \le x \le 2$ then the value of K is |  |  |  |
|      | 2 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ii)     | one                                        |  |  |  |
|      | i) 3/4<br>iii) 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iv)     | 3/2                                        |  |  |  |
|      | d) The range of t-distribution is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _•      |                                            |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ii)     | (0,1)                                      |  |  |  |
|      | i) $(-\infty,\infty)$<br>iii) $(-1,1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iv)     | $(0, \infty)$                              |  |  |  |
|      | e) If $X \sim N(-60,25)$ , then the $N(0, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) var   | iate is                                    |  |  |  |
|      | i) $\frac{X+60}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ii)     | $\frac{X-60}{5}$                           |  |  |  |

|     | f)  | If X and Y are independent Chisquare variable with 5 and 10 degrees of freedom respectively then X + Y follows |                                    |                    |                                                  |
|-----|-----|----------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|--------------------------------------------------|
|     |     |                                                                                                                |                                    | ii)                | $x^2$ with 5                                     |
|     |     | i)                                                                                                             | N (5, 10)                          | iv)                | AND WAR IN THE                                   |
|     |     | iii)                                                                                                           | $x^2$ with 10                      | ,                  | x with 15                                        |
|     | g)  | Criti                                                                                                          | cal region is also known as        |                    | tongo ragion                                     |
|     |     | i)                                                                                                             | level of significance              | ii)                |                                                  |
|     |     | iii)                                                                                                           | rejection region                   | iv)                |                                                  |
|     | h)  | In R                                                                                                           | AND () function generates ra       | ndon               | n numbers from                                   |
|     |     | i)                                                                                                             | U(0, 1)                            | ii)                |                                                  |
|     |     | iii)                                                                                                           | U (-1, 1)                          | iv)                |                                                  |
|     | i)  | For                                                                                                            | large sample test for testing p    | opula              | tion mean, test statistic follows                |
|     |     |                                                                                                                | _ to a little to the control of    |                    |                                                  |
|     |     | i)                                                                                                             | Chi-square                         | ii)                | t <sub>n</sub>                                   |
|     |     | iii)                                                                                                           | normal                             | iv)                | <u> </u>                                         |
|     | j)  | Box                                                                                                            | -Muller transformation is use      | d to g             | generate a random sample from                    |
|     |     | 5                                                                                                              | <br>binomial distribution          | ii)                | normal distribution                              |
|     |     | i)<br>iii)                                                                                                     | exponential distribution           | iv)                | uniform distribution                             |
|     |     |                                                                                                                |                                    |                    |                                                  |
| Q2) | Att | empt                                                                                                           | any two of the following three     | :                  | [10 + 10 = 20]                                   |
|     | a)  | Defi                                                                                                           | ine the terms:                     |                    |                                                  |
|     | ,   | i)                                                                                                             | Critical Region.                   |                    |                                                  |
|     |     | ii)                                                                                                            | Type I and II errors.              |                    |                                                  |
|     |     | iii)                                                                                                           | Continuous random variable         |                    | 2.11                                             |
|     |     | iv)                                                                                                            | Variance of continuous rando       | m vai              | riable                                           |
|     |     | v)                                                                                                             | c.d.f. of continuous random v      | ariat              | bie                                              |
|     | b)  | Defi                                                                                                           | ne:                                |                    |                                                  |
|     |     | i) N                                                                                                           | ormal distribution ii) Standar     | d non              | mal distribution. The life time of               |
|     |     | a ce                                                                                                           | rtain battery have an average of   | 300                | hours with standard deviation of                 |
|     |     | 35 1                                                                                                           | nours. Assuming the distribu       | tion               | of lifetime is normal, find the                  |
|     |     | prob                                                                                                           | pability that lifetime lies from 2 | 225 h              | ours to 355 hours.                               |
|     | c)  | Exp                                                                                                            | lain:                              |                    | 1                                                |
|     | ,   | i)                                                                                                             | Large sample test for testing      | Η <sub>0</sub> : μ | $\mu = \mu_0$ against $H_1$ : $\mu \neq \mu_0$ . |
|     |     | ii)                                                                                                            | Chisquare test for goodness        | of fit.            |                                                  |
|     |     |                                                                                                                | a .                                |                    |                                                  |

Q3) Attempt any Four of the following:

$$[5+5+5+5=20]$$

a) Find the constant, so that the following function can be taken as a p.d.f. of X,

$$f(x) = K(3-x), \ 0 \le x \le 3$$
$$= 0 \qquad \text{otherwise}$$

Hence find Mean of X.

- b) What is simulation? State its merit.
- c) If a continuous r.v. X follows u (0, 1). Find
  - i)  $P\left[|X| < \frac{1}{3}\right]$

ii) 
$$P\left[\left(\frac{4X+1}{2}\right) \le 2\right]$$

- d) Define Chi-square, t and F distribution. Also state the interrelation between normal, Chi-square, t and F distribution.
- e) If the random variable X has the pdf

$$f(x) = \frac{1}{2}(x+1) -1 < x < 1$$
  
= 0 otherwise

Find distribution function of X and hence Find  $P\left[-\frac{1}{2} < X < \frac{1}{3}\right]$ 

f) A random variable X has an exponential distribution with mean 5. Find P[X > 8 | X > 4].



| Seat<br>No.       |                                                                                                                                                |                         |              |                        |        | N.    | Total No. of Pages: 3                   |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|------------------------|--------|-------|-----------------------------------------|
|                   | (Par                                                                                                                                           | t - D (                 | Semest       | er - II)               | Ev     | amii  | nation, November - 2017                 |
|                   | (~                                                                                                                                             | ) (                     |              | ISTICS                 |        |       |                                         |
| Contin            | uous                                                                                                                                           | s Proba                 |              |                        |        | -     | nd Testing of Hypothesis                |
| £ 1               |                                                                                                                                                |                         |              | Sub. C                 | ode :  | 597   | 711                                     |
| Day and I         |                                                                                                                                                |                         |              | 11 - 2017              | Ñ      |       | Total Marks : 50                        |
| Instruction       | Instructions: 1) All questions are compulsory. 2) Figures to right indicate full marks. 3) Use of calculator and statistical table is allowed. |                         |              |                        |        |       |                                         |
| Q1) Cho           | ose tl                                                                                                                                         | he correc               | ct alterna   | tive.                  |        |       | [10]                                    |
| a)                |                                                                                                                                                | has chi s<br>listributi |              | stributio              | n with | n de  | grees of freedom, then variance         |
|                   | i)                                                                                                                                             | n                       |              |                        |        | ii)   | 2n                                      |
| 2                 | iii)                                                                                                                                           | $n^2$                   |              |                        |        | iv)   | None of these                           |
| b)                | For                                                                                                                                            | normal                  | distrib      | ution, th              | ie va  | lue o | of coefficient of kurtosis $\gamma_2$ = |
| -,                |                                                                                                                                                |                         | <u> </u>     | a 8                    |        | F. 6  |                                         |
| Ţ.                | i)                                                                                                                                             | 0                       |              | <i>6</i> 2             |        | ii)   | 3                                       |
|                   | iii)                                                                                                                                           | less tha                | n 3          |                        |        | iv)   | More than 3                             |
| c)                | P (F                                                                                                                                           | Rejecting               | H when       | n H <sub>o</sub> is tr | ue) is | s     | <del>.</del>                            |
| ,                 | i)                                                                                                                                             | Туре I                  |              |                        |        | ii)   | Type II error                           |
| 3                 | iii)                                                                                                                                           |                         | fsignific    | ance                   |        | iv)   | None of these                           |
| d)                | If X                                                                                                                                           | $\zeta \to F(n_1)$      | $(n_2)$ then | n, 1/X _               |        |       | distribution.                           |
| 50000 <b>€</b> (A | i)                                                                                                                                             | Norma                   |              |                        |        | ii)   | t and the second                        |
|                   | iii)                                                                                                                                           |                         |              |                        |        | iv)   | $F(n_2,n_1)$                            |

| e)     | If Y is a continuous random variable with p.d.f. $f(y)$ then $\int_{-\infty}^{+\infty} f(y)dy =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |           | th p.d.f. $f(y)$ then $\int_{-\infty}^{+\infty} f(y) dy =$ |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|------------------------------------------------------------|
|        | i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                      | ii)       | -1                                                         |
|        | iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                    |           | 0                                                          |
| f)     | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hypothesis of no difference            | ce is     | •                                                          |
|        | i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Alternative hypothesis                 | ii)       | Null hypothesis                                            |
|        | iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Composite hypothesis                   | iv)       | None of these                                              |
| g)     | #2000 PER PROPERTY AND PROPERTY | has exponential distribution ()] is    | with mea  | an $\theta$ then, its distribution function                |
| 888    | i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $e^{-x\theta}$                         | ii)       | $1 - e^{-x\theta}$ $1 - e^{-x/\theta}$                     |
|        | iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $e^{-xl\theta}$                        | iv)       | $1-e^{-x/\theta}$                                          |
| h)     | If X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $I \rightarrow U$ (4, 16) then mean is |           | ·                                                          |
|        | i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                     | ii)       | 12                                                         |
|        | iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                     | iv)       | 8                                                          |
| i)     | Rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | io of two independent chi              | square va | riate is variate.                                          |
|        | i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Normal                                 | ii)       | F                                                          |
|        | iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t                                      | iv)       | chi square                                                 |
| j)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | distribution is sym                    | metric ab | out mean.                                                  |
|        | i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                                      | ii)       | Normal                                                     |
|        | iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t                                      | iv)       | Both (ii) and (iii)                                        |
| Q2) At | ttempt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | any two of the following.              |           | [20]                                                       |
| a)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | plain the terms:                       |           | e                                                          |
|        | i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hypothesis                             |           | e                                                          |
|        | ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Type I error                           |           |                                                            |
|        | iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Type II error                          |           |                                                            |
|        | iv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Critical region                        |           |                                                            |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level of significance                  |           |                                                            |

- b) Define normal distribution. State its mean, variance and additive property. Also state theorem on approximation to binomial and poisson.
- c) State p.d.f., mean and variance of exponential distribution. Prove the lack of memory property of exponential distribution.

#### Q3) Attempt any four of the following:

[20]

- a) Define distribution function and state its properties.
- b) In a radio listener's survey, 120 persons were interviewed and their opinions about preference to Hindi or English music and preference to classical or light music were asked. The results are as follows:

|                 | English Music | Hindi Music |
|-----------------|---------------|-------------|
| Classical music | 13            | 45          |
| Light Musis     | 39            | 23          |

Examine at 5% los whether to music language is independent of type of music.

- c) If mean and variance of U (a, b) are 5 and 3 respectively. Determine values of a, b.
- d) State relation between chi square, t and F variate.
- e) If  $X_1, X_2, X_3$  and  $X_4$  are iid N(0,1) variates and  $Y = \frac{3X_4^2}{X_1^2 + X_2^2 + X_3^2}$  find c such that  $P(Y \le C) = 0.01$ .
- f) A company producing spark plugs claimed that there would be 10% defective spark plugs. When a sample of 500 was taken 62 were found defective. Test correctness of company's claim.



ST-273

| Seat |  |
|------|--|
| No.  |  |
|      |  |

Total No. of Pages: 4

B.Sc. (Computer Science) (Entire) (Part - I) (Semester - II) Examination, April - 2018

**STATISTICS** 

Continuous Probability Distributions and Testing of Hypothesis (Paper - IV)

Sub. Code: 59711

Day and Date: Thursday, 26-4-2018

Total Marks: 50

Time: 12.00 noon to 2.00 p.m.

Instructions:

- 1) All questions are compulsory.
- Figures to the right indicate full marks.
- 3) Use of calculator and statistical table is allowed.

Q1) Choose the correct alternative.

[10]

- a) If X follows chi square distribution with variance 6 then mean of the distribution is \_\_\_\_\_\_.
  - i) 4

ii) 12

iii) 2

- iv) 3
- b) Testing  $H_0: \mu = 50$  against  $H_1: \mu \neq 50$  is a \_\_\_\_\_.
  - i) one sided left tailed test
- ii) two sided test
- iii) one sided right tailed test
- iv) none of these
- c) If  $X \rightarrow N$  (-80,81) then N(0, 1) variate is \_\_\_\_\_.
  - i)  $\frac{X+80}{9}$

ii)  $\frac{X-80}{9}$ 

iii)  $\frac{X+80}{81}$ 

iv)  $\frac{X-80}{81}$ 

|      |                               |                                            |       | ~ Z = 7 C                                         |  |  |  |  |
|------|-------------------------------|--------------------------------------------|-------|---------------------------------------------------|--|--|--|--|
| d)   | If $X \to t_n$ then $E(X)$ is |                                            |       |                                                   |  |  |  |  |
|      |                               | 1                                          |       | n 1                                               |  |  |  |  |
|      | i)                            | n                                          | ii)   | $\frac{n}{n-2}$                                   |  |  |  |  |
|      | iii)                          | 0                                          | iv)   | 2 <i>n</i>                                        |  |  |  |  |
| e) ~ | If X                          | $T \rightarrow U$ (4, 16) then variance is | =_    |                                                   |  |  |  |  |
|      | i)                            | 10                                         | ii)   | 12                                                |  |  |  |  |
|      | iii)                          | 20                                         | iv)   | 8                                                 |  |  |  |  |
| f)   | Lac                           | k-of memory property is satisf             | ied b | y distribution.                                   |  |  |  |  |
|      | i)                            | chi square                                 | ii)   | exponential                                       |  |  |  |  |
|      | iii)                          | normal                                     | iv)   | none of these                                     |  |  |  |  |
| g)   | Rej                           | ecting H <sub>o</sub> when it is true is   |       | _·                                                |  |  |  |  |
|      | i)                            | Type I error                               | ii)   | Type II error                                     |  |  |  |  |
|      | iii)                          | level of significance                      | iv)   | none of these                                     |  |  |  |  |
| h)   | Life                          | e length of a tube is example of           | `     | variable.                                         |  |  |  |  |
| C    | i)                            | discrete                                   | ii)   | continuous                                        |  |  |  |  |
|      | iii)                          | ungrouped                                  | iv)   | none of these                                     |  |  |  |  |
|      |                               | -                                          |       | $2X_3^2$                                          |  |  |  |  |
| i)   | Let                           | $X_1, X_2, X_3$ and iid $N(0, 1)$ variat   | es. T | hen the distribution of $\frac{1}{X_1^2 + X_2^2}$ |  |  |  |  |
|      | is _                          |                                            |       |                                                   |  |  |  |  |
|      | i)                            | F <sub>2, 1</sub>                          |       | F <sub>1, 2</sub>                                 |  |  |  |  |
|      |                               | F <sub>2, 2</sub>                          |       | F <sub>1, 1</sub>                                 |  |  |  |  |
| j)   | Squ                           | are of standard normal variate             | is    | variate.                                          |  |  |  |  |
|      | i)                            | F                                          | ii)   | none of these                                     |  |  |  |  |
|      | iii)                          | chi square                                 | iv)   | none of these                                     |  |  |  |  |
|      | 19                            | -                                          |       |                                                   |  |  |  |  |
| (    | 5                             | -2-                                        |       | 50                                                |  |  |  |  |

| Seat No.            |                         | $\neg$                                                                        |                 |                         | Total No | S 1-2/3<br>o. of Pages : 4 |
|---------------------|-------------------------|-------------------------------------------------------------------------------|-----------------|-------------------------|----------|----------------------------|
|                     | (Comp                   | uter Science) (En                                                             | itire)          | (Part I)                | (Cama)   | 11/2                       |
|                     | 1                       | Examination                                                                   | ı, Apr          | (Fart - 1)<br>il - 2018 | (Seme    | ster - 11)                 |
| Consid              | - Maria                 | STAT                                                                          | ISTIC           | CS                      | W        |                            |
| Conti               | nuous P                 | robability Distrib                                                            | utions          | and Testi               | ıĝof H   | ypothesis                  |
|                     |                         | (Paper<br>Sub. Cod                                                            |                 |                         |          |                            |
| Day and<br>Time : 1 | Date : The<br>2.00 noon | ursday, 26 - 4 - 2018<br>to 2.00 p.m.                                         |                 | 30. 6                   | Total    | Marks : 50                 |
| Instruction         |                         | All questions are comp<br>Figures to the right ind<br>Use of calculator and s | icate full      | marks.                  | d.       |                            |
|                     | 1700                    |                                                                               |                 | ٠ ,                     |          |                            |
| Q1) Cho             | oose the co             | orrect alternative.                                                           |                 |                         |          | , N[10]                    |
| a)                  | If X foll               | ows chi square distrib                                                        | ution w         | rith variance           | 6 then m |                            |
| C                   | 4                       |                                                                               | ii)             | 12                      | Jh.      |                            |
| 8                   | iii) 2                  |                                                                               | iv)             | 3                       | and of   | Ħ                          |
| b)                  | Testing I               | $H_o: \mu = 50$ against $H_1$                                                 | : <i>μ</i> ≠ 50 | is a                    |          |                            |
|                     | i) one                  | sided left tailed test                                                        | ii)             | two sided to            | est      |                            |
|                     | iii) one                | sided right tailed test                                                       | iv)             | none of the             | se       |                            |
| c)                  | If $X \to N$            | (-80,81) then N(0, 1)                                                         | ) variate       | e is                    |          |                            |
|                     | i) $\frac{X+y}{9}$      | 80<br>1                                                                       | ii)             | $\frac{X-80}{9}$        |          |                            |
|                     | iii) XH                 | 80                                                                            | iv)             | $\frac{X-80}{81}$       | 34-702   | 21.                        |
| 0                   | ,J,                     |                                                                               |                 | C                       | 2        | P.T.O.                     |

| d)    | If         | $X \to t_n$ then E(X) is                   |              | ST-2                                                    |
|-------|------------|--------------------------------------------|--------------|---------------------------------------------------------|
| si si | i)         |                                            | ii           | $\frac{n}{n-2}$ $2n$                                    |
| e) (  | If ?       | $X \rightarrow U$ (4, 16) then variance    | iv<br>e is = | ) 2n                                                    |
|       | i)<br>iii) | 10<br>20                                   | ii)<br>iv    |                                                         |
| f)    | Lac        | ck-of memory property is sat               |              |                                                         |
|       | i)<br>iii) | chi square<br>normal                       | ii)<br>iv)   | exponential                                             |
| g)    | Rej        | ecting H <sub>o</sub> when it is true is _ |              |                                                         |
|       | i)         | Type I error level of significance         | ii)<br>iv)   | Type II error                                           |
| h)    | Life       | length of a tube is example discrete       | ofii)        | AN TO E                                                 |
|       | iii)       | ungrouped                                  | iv)          | none of these                                           |
| i)    |            | $X_1, X_2, X_3$ and iid N(0, 1) vari       | ates. T      | Then the distribution of $\frac{2X_3^2}{X_1^2 + X_2^2}$ |
|       |            | F <sub>2, 1</sub>                          | ii)          | F <sub>1, 2</sub>                                       |
|       | iii)       | F <sub>2, 2</sub>                          | iv)          | F <sub>1, 1</sub>                                       |
| j)    | Squa       | are of standard normal variat              |              |                                                         |
|       | i)<br>iii) | F Chi square                               | ii)<br>iv)   | none of these                                           |
| c)    | tic, sit   | -                                          | e= .*        | none of these                                           |

### Q2) Attempt any two of the following.

[20]

- Define uniform distribution over (a, b). Find its mean, variance and SUK-1720 distribution function.
- Explain chi square test for: b)
  - Testing goodness of fit.
    - Independence of attributes.
- Define continuous random variable. Explain the terms:
  - probability density function i)
  - ii) mean
  - iii) variance
  - distribution function. iv)

#### Q3) Attempt any four of the following.

[20]

- a) State properties of standard normal curve.
- State relation between chi square, t, and F distribution. b)
- Suppose that the life time of a certain make of T.V. tube is exponentially distributed with a mean life 1600 hrs. What is probability that
  - tube will work upto 2400 hrs? i)
  - tube will survive after 1000 hrs?
- If t, follows Student's t distribution with n d.f. find
  - $P(|t_{10}| > 1.812)$ i)
  - ii)  $P(|t_8| < 2.306)$
  - iii)  $P(t_{26} < 0.531)$ iv)  $P(t_{29} > 1.697)$

SUK-12011

e) Two random samples size 9 and 11 d.f. are drawn from two normal populations. The following information is given:

$$n_1 = 9$$
,  $n_2 = 11$ ,  $\Sigma x = 9.6$ ,  $\Sigma x^2 = 61.52$ ,  $\Sigma y = 16.5$   $\Sigma y^2 = 73.26$ 

Test whether two population have same variance. Use  $\alpha = 0.01$ .

f) A sample of 400 males students is found to have mean weight of 50.47 kg. Can it be regarded as a sample from a large population with mean weight 52 kg given that population standard deviation is 1.2 kg? Use α = 5%.

CANTAGOTA

CONFIDENCE OF THE SECOND

J.1201