

B.Sc. (Part-II) (Semester-III) (New) (CBCS) Examination, November - 2019 **PHYSICS**

Thermal Physics and Statistical Mechanics-I (DSC-C1) (Paner - V)

	·		b. Code : 7		01			
Day and I Time: 12	Total Marks : 50							
Instruction	1) 2) 3) 4)	Figures to the Use of calculat	right indicate t ors/logarithm	ables is allowed.				
Q1) Sele	ct the co	rrect alternative	from the foll	owi	ing: [10			
a)	The ave	erage kinetic en	ergy of a mo	lecı	ule in each degree of freedom i			
	i) $\frac{1}{2}$			ii)	KT			
	iii) $\frac{3}{2}$	KT		iv)	$\frac{5}{2}KT$			
b)	Mayors relation for specific heat of gas is							
	i) C	=C'		ii)	$C_p - C_v = R$			
	iii) C	$+C_v=R$		iv)	Non of these			
c)	The coefficient of viscosity of gas at absolute temperature T is proportional to							
	i)	\overline{T}		ii)	$\frac{1}{T}$			
	iii) T			iv)	T^2			
d)	On Fahrenhit scale ice point is marked at							
	i) 0°	F.		ii)	32°F			
	iii) 49	92°F		iv)	273°F			
					P.T.0			

SW-461

	i)	Microvolt	ii)	Milivolt						
	iii)	Volt	iv)	Kilovolt						
f)		remains constant during adiabatic process.								
	i)	Pressure	ii)	Volume						
	iii)	Temperature	iv)	Entropy						
g)	For	diatomic gas the ratio $\frac{C_{\rho}}{C_{\nu}}$ =								
	i)	1.4	ii)	2.4						
	iii)	1.67	iv)	1.33						
h)	The of	e chemical equilibrium of therr	nody	namic system refers to	constancy					
	i) iii)	Temperature Density	ii) iv)	Pressure Composition						
i)	All	natural process are	_							
	i)	Isothermal	ii)	Adiabatic						
	iii)	Reversible	iv)	Irreversible						
j)	He	Heat conduction through a body is example of process.								
	i)	Reversible	ii)	Irreversible						
	iii)	Isothermal	iv)	Adiabatic						
2) At		t any two of the following:			[20]					
a)										
b)	Ci	Explain Carnot's ideal heat engine. Obtain expression for efficiency of Carnot's heat engine working between the temperatures T_1 and T_2 .								
c)	Ex	ermal conductivity of the gas.	егду і	n gases. Obtain an ex	pression for					

Thermo e.m.f. Produced in a thermocouple is of the order of

- [20]
- a) State properties of mercury suitable for its use in thermometer.
- b) Explain the term free path and mean free path with suitable diagram.
- c) State advantages and disadvantages of thermoelectric thermometer.
- d) Explain experiment verifying maxwell's law of distribution of velocities.
- e) Calculate the work done when a 1 k mole of a prefect gas expands isothermally at 27°C to double its original volume. (Given R=8.3J/k-mole °K)
- f) Give physical significance of entropy.

