| Seat | | | | |------|--|--|--| | No. | | | | ### B.C.S. (Part – I) Examination, 2010 STATISTICS (Paper – II) (New) Probability and Probability Distribution | Pı | obability and | Probability Distr | ibution | |---|--------------------|---------------------------|--| | Day and Date: Monday
Time: 3.00 p.m. to 6.00 | | | Total Marks: 100 | | 3) A | Use of calculato | r and statistical tabl | le is allowed .
e written in one a nd same | | | SE | ECTION – I | N. | | 1. Select correct alterna | ative: | | a = ⁴⁰ | | I) Probability of im | possible event | is | | | a) 1 | b) 0.5 | c) 0 | d) none of these | | II) A coin is tossed u
space is | ntil 'tail' appear | rs for first time, for th | is experiment the sample | | a) { } | | b) Countably | finite | | c) Countably inf | inite | d) Uncountab | oly infinite | | III) Probability that a | leap year selec | ted at random will c | ontain 53 Sundays is | | a) 6/7 | b) 1/7 | c) 2/7 | d) None of these | | IV) If A and B are $P(A' \cap B')$ is | independent ev | rent with $P(A) = 0$. | 5 and P(B) = 0.4 then | | a) 0.3 | b) 0.2 | c) 0.9 | d) None of these | | V) If A and B are inc | dependent event | with $P(A) = 0.2$ and | P(B) = 0.6 then $P(A B)$ | | a) 0.2 | b) 0.6 | c) 1/3 | d) None of these | | VI) If $A \subset B$, with po | (A) = 0.2 and P | (B) = 0.5 then P(B A) | | | a) 0 | b) 0.5 | c) 1 | d) None of these | | VII) If M ₀ is mode of ra | andom variable X | then P[M ₀] is | 3 | |---|-----------------------|-------------------------------|--| | a) Maximum | b) Minimum | c) 1 | d) 0 | | VIII) If $E(X) = 5$, then | E(2X + 4) is | | | | a) 5 | b) 14 | c) 4 | d) 10 | | IX) If $X \sim B$ (10, 0.5), | then E (X) is | | | | a) 5 | b) 2.5 | c) 10 | d) 0.5 | | X) If X follows Poiss | on distribution wit | h mean 3 the | 5 | | a) 6 | b) 3 | c) 1.5 | d) None of these | | 2. Attempt any two of | the following: | | | | 1) Explain the terms | ; | | | | a) Sample space | | | | | b) Event | | | | | c) Probability of | an event | | | | d) Mutually excl | usive event | | (32) | | e) Discrete samp | le space | | | | I) Define pair w
event. | ise independence a | nd mutual ind | dependence in case of three | | 221, 222 and
be the event the | one ticket drawn from | om the box at ket drawn is 1. | , 112, 121, 211, 122, 212, random. Let Ai ($i = 1, 2, 3$). Test whether Ai ($i = 1, 2, 3$) | | 3) Illustrate the terr | ns : | | | | a) Discrete rand | lom variable | | | | b) p.m.f. of disc | crete random variab | le | | | c) Distribution | function of discrete | random varia | ble | | d) Mean and va | riance of discrete ra | andom variabl | e | Attempt any four of the following : e) Probability Generating function - 1) For any two event A and B, show that $P(A \cup B) = P(A) + P(B) P(A \cap B)$ - 2) Let A, B and C be three mutually exclusive and exhaustive event defined on a probability space Ω . If 3P(A) = 2P(B) = P(C). Find $P(A \cup B)$. | 3) | If A and B are indep | endent event | 03 WA •00000001 000001 0 V 00 0 | | | | | |-------|---|-----------------------|---------------------------------|------------------------|--|--|--| | 4) |) If A and B are independent event then show that A' and B' are independent. (a) Let X be a discrete random variable with p.m.f. | | | | | | | | | P(X = x) = X/15 | andom variable w | vith p.m.f. | | | | | | | P(X = x) = X/15 | x = 1, 2, 3, 4 | , 5 | | | | | | | Find a) E (X) | otherwise | | | | | | | 5) | | b) E $(2X + 5)$ |) | | | | | | | Define discrete unifo uniform r.v. taking v | | | | | | | | 6) | State the probability find variance. | generating funct | ion of Poisson di | stribution and hence | | | | | | | SECTIO | N - II | | | | | | 4. Se | elect correct alternative | : | £ | | | | | | I) | Lack of memory pro | perty is followed | by distribution | | | | | | | a) Exponential | posto io ionowed | Harrison Warren to the Control | | | | | | | a) NT- 1 | | b) Uniform | | | | | | т | | edig ye, | , | * | | | | | ш) | Box-Muller transform | nation is used for | | | | | | | | a) Fitting of distribu | tion | | | | | | | _ | c) Simulation | | d) None of above | e , in | | | | | III) | p.d.f. of r.v. X is give | n by, $f(x) = 3x^2$, | 0 < x < 1; = 0, oth | nerwise, then E (X) is | | | | | | a) 3/4 | b) 0 | c) 1/4 | d) 2/3 | | | | | IV) | $X \sim \cup (1, 5)$, then var | iance of X is | | The second second | | | | | | a) 1 | b) 1/2 | c) 4/3 | d) 1/4 | | | | | V) | If $X \sim N(0, 1)$, $Y \sim 1$ | V (0. 1) and X ar | nd Y are independe | | | | | | | a) 0 | b) 1 | c) 2 | d) None of A | | | | | | 10 mm | - * | | | | | | | VI) | $X \sim \chi^2$ with 5 degree | s of freedom the | n variance of X is | | | | | | | a) 5 | b) 10 | c) 25 | d) 0 | | | | | VII) | If r.v. X has t-distribu | ition with n degr | ees of freedom the | en X ² has | | | | | | a) t-distribution with | | | | | | | | | b) Fn, n distribution | | | | | | | | | c) F1, n distribution | | | | | | | | | d) Fn, 1 distribution | | | | | | | | VIII) | Let ry Y has E distri | hution with n1 a | nd n2 degrees of | . | | | | | | Let r.v. X has F distribetween | Dution with hi a | ine ine degrees of | freedom. Then X lies | | | | | | a) n1 and n2 | b) 0 and n1 | c) 0 and n2 | | | | | | | | c, c | , | d) None of these | | | | | - 54 | | |--|--| | IX) Region of rejection is called | d as | | a) level of significance | b) critical region | | c) acceptance region | d) none of these | | X) Rejecting H ₀ when it is Tr | ue is | | a) Type one error | b) Type two error | | c) test criteria | d) level of significance | | 5. Attempt any two of the follow | wing: | | 1) Explain the terms: | | | a) Continuous sample space | ce b) Continuous random variable | | c) c.d.f. of continuous r.v. | d) Expectation of continuous r.v. | | e) Variance of continuous | r.v. | | Define Normal, chi-square
Normal and | e, t and F distribution. Also state relation between | | a) chi-square b) t | c) F distribution | | 3) Explain Large sample test | for testing | | a) mean | b) proportion | | 6. Attempt any four of the follo | owing: | | 1) Let X be a continuous r.v. | | | $f(x) = kx , 0 \le x \le 1$ | | | $= \mathbf{k}$, $1 \le \mathbf{x} \le 2$ | | | $= -kx + 3k, 2 \le x \le 3$ $= 0 \qquad \text{otherwise}$ | | | Find: | | | (I) \mathbf{k} II) $\mathbf{E}(\mathbf{X})$ | | | 2) Let $X \sim N(3, 4)$, Find | n (1) | | a) $P[X > 5]$ b) 1 | P[x<1] c) $P[X<6]$ | | d) $P[2 < X < 6]$ e) 1 | P[x > 0] | | State Mean, Variance, a
Chi-square distribution. | additive property and Normal approximation | | 4) Explain the terms: | | | a) Parameter and statistic | | | b) Types of error | | | 5) Give merits and demerits | of simulation | 6) Find variance of exponential distribution. | Seat | | |------|--| | No. | | ### B.C.S. (Part – I) (Semester – I) Examination, 2011 STATISTICS (Paper – II) Probability and Discrete Probability Distribution | Day and Date: Thursday, 12 | -5-2011 | * | Total Morks : 40 | |---|--------------------|--|-----------------------| | Time: 11.00 a.m. to 1.00 p.r | | | Total Marks: 40 | | Instructions: 1) All que 2) Figur 3) Use o | es to the right in | p ulsory .
Idicate full marks.
Id Statistical tables | s is allowed . | | 1. Choose the correct altern | native : | | 8 | | i) If P(A∪B) = P(A) a) Equally likely c) Exhaustive | | ents A and B are b) Mutually excl d) Independent | usive | | ii) For a discrete randona) X E(a) + b | | | d) None of these | | iii) If F(x) be distributioa) Decreasing functionc) Negative function | on | b) Increasing furd) None of these | | | iv) The variance of Binor a) n p | | s
c) npq | d) p q | | v) Probability of an important a) 1 | b) 0 | c) - 1 | d) None of these | | vi) Probability of an even | 500 | | | | a) - 1 to + 1vii) If A and B are independent | | | d) 0 to ∞ | | | b) $P(A \cup B)$ | | d) $P(A)/P(B)$ | | viii) If $X \rightarrow B(n, p)$ and I | E(X) = 5/3 and Q | $=\frac{2}{3}$ then the value | of n is | | a) 25 | b) 1/25 | c) 1/5 | d) 5 | ## ### 2. Attempt any two of the following: a) Let X be a discrete random variable with p.m.f. $$P(X = x) = 1/15,$$ for $x = 1, 2, ----- 15$ = 0 otherwise Find: - i) E(X) - ii) E(3X+5) iii) Var(X) iv) Var(3X+5) - b) Define: - i) Discrete sample space - ii) Power set - iii) Baye's Theorem - iv) Conditional Probability. - c) Define Binomial distribution. Establish recurrence relation for probabilities. If $X \to B$ (n = 10, p = 0.3) find P(X = 1). ### 3. Attempt any four of the following: a) For three independent events A, B, C on a sample space, Prove that, i) A and B are independent. - ii) A, B and C are pair wise independent - b) State and prove additive property of poisson distribution. - c) Let X be a discrete uniform random variable taking the values 1, 2, 3, 4, 5, 6. Find: - i) $P(X \le 2)$ - ii) P(X > 3) - d) If A and B are two events defined on Ω such that $A \subset B$, show that $P(A) \leq P(B)$. - e) If A and B are independent with P(A) = 1/4, P(B) = 1/3Find: - i) $P(A \cup B)$ ii) $P(A^{c} \cap B^{c})$ - f) If $X \rightarrow P(m = 2)$ find: - i) P(X = 1) - ii) $P(X \le 1)$ | Seat | | |------|--| | No. | | Total No. of Pages: 3 ## B.C.S.(Part - I) (Semester -I)Examination, 2013 STATISTICS (PAPER - II) | | P | roba | bility & Discret | e Probabi | lity Distributions | |-----------|----------------|-------------------|---|-----------------------------|--| | | | | Sub. C | ode : 559 | 78 | | Day and D | ate : | Mon | day, 15 - 04 - 2013 | | Total Marks : 50 | | Time: 3. | 00 p. | m. to | 5.00 p.m. | | | | Instructi | ions : | 1) | All questions are con | mpulsory | | | | | 2) | Figures to the right | | marks. | | | | 3) | Use of calculators a | | | | Q1) Selec | t the | corre | ect alternative to an | swer the fo | llowing sub-questions : [10] | | a) | IfAa | and B | are mutually exclusive | sive events t | then P(A/B) is equal to | | | i) | 1 | | ii) | P(A) | | | iii) | 0 | | iv) | P(B) | | b) | Whie | ch of t
single | the following is a pa
e card from a deek | ir of mutual
of 52 playi | ly exclusive events in the drawing ng cards? | | | i) | A he | art and a queen | ii) | An even number and a spade | | | iii) | A clu | ub and red card | iv) | An ace and an odd number | | c) | If A :
P(A' | and B
nB)= | are independent e | events with | P(A)=0.4, $P(B)=0.5$ then | | | i) | 0.03 | | -ii) | 0.9 | | | iii) | 0.1 | | iv) | 0.3 | | d) | Whi | ch of | the following state | ment is true | ? | | | i) | A an | d A' form partition | of Ω | | | | ii) | A an | d Ω form partition | of Ω | - | | - | 1 | 1 | |---|---|---| | | 1 | 1 | | | | iii) | A and A' do not form partition | on oi | 52 | | | |-----|------|--|--|--------|--|--|--| | | | iv) | Only two events cannot form a partition of Ω | | | | | | | e) | If a discrete sample space contains 5 elements then its power set with contain elements. | | | | | | | | | i) | 5 | ii) | 10 | | | | | | iii) | 32 | iv) | 25 | | | | | f) | | screte random variable takes vaif the mean of x is 6then the v | | 1, 2,, k with equal probabilities of k is | | | | | | i) | 6 | ii) | 13 | | | | | | iii) | 12 | iv) | 11 | | | | | g) | Mea | an = variance is true for which o | of the | following discrete distribution | | | | | \$ | i) | Discrete uniform distribution | ii) | binomial distribution | | | | | | ∕iii) | poisson distribution | iv) | none of these | | | | | h) | If fo | r a binomial variate the mean is | s 9 an | nd variance is 6 then the value of | | | | | | (12) | · | | 1 | | | | | | i)
 | 8 | ii) | 12 | | | | | | iii) | 27 | iv) | 30 | | | | | i) | If E | (x) = 5 then E(2x+6) is | | | | | | | | i) | 16 | ii) | 10 | | | | | | iii) | . 6 | iv) | 20 | | | | | j) | If E | $(x) = m$ then $E(x-m)^2$ represent | ts | | | | | | | i) | Variance | ii) | μ ₂ (Second central movement) | | | | | | iii) | both (i) and (ii) | iv) | none of these | | | | Q2) | Atte | mpt a | any Two of the following: | | [20] | | | | | a) | If P(| $(A) = x$, $P(B) = y$, $P(A \cap B) =$ | z the | en express $P(A \cup B)$, $P(A' \cap B')$, | | | | | | P(A' | $\cap B$), $P(A' \cup B)$ and $P(A' \cup B)$ | ') in | terms of x, v and \neq | | | | | | | The second secon | 5 | , J | | | - b) Define binomial distribution with parameters n and P. Find its pgf, hence or otherwise find mean and variance of the distribution. - c) If A and B are independent then show that: - i) A and B' are independent. - ii) A' and B are independent. - iii) A' and B'are independent. ### 03) Attempt any Four of the following: [20] - a) If $A \subseteq B$ then show that $P(A) \subseteq P(B)$ - b) Define partition of the sample space. write the statement of Bayes' theorem. - c) Define expectation of a random variable x. Show that E(ax+b) = aE(x) + b - d) Find the recurreance relation for probabilities of binomial distribution. - e) Find mean and variance for Poisson distribution. - f) Suppose x is a discrete random variable with Pmf $$P(x=x) = \begin{cases} k & x^2, & x = 1,2,3 \\ 0 & \text{ow} \end{cases}$$ Find k and E(x). C - 257 Total No. of Pages: 3 # B.C.S. (Part - I) (Semester - II) Examination, 2013 ## STATISTICS (Paper - III) **Descriptive Statistics - II** Sub. Code: 58180 y and Date: Saturday, 04 - 05 - 2013 Total Marks: 50 me: 3.00 p.m. to 5.00 p.m. All questions are compulsory. Instructions: 1) - Use of calculators and statistical table is allowed. 2) - Figures to the right in the bracket indicate full marks. 2) - 1) Choose the correct alternative: - a) If $\aleph_2 < 0$, then the frequency curve is \angle - mesokurtic i) platykurtic iii) leptokurtic - iv) any of the above - b) If $r = \pm 1$, the angle between the two lines of regression is - 90° 45° ii) 00 VIII) - iv) 30° - c) If there exists perfect correlation between X and Y then correlation coefficient (r) is - ジー・1)をのりをでいる iii) -1 - d) If $byx = -\left(\frac{1}{4}\right)$ and bxy = -1 then correlation coefficient (r) is ____ - i) $\frac{1}{4}$ iii) - e) Given two regression lines as X + 4Y 8 = 0 and X 2Y + 4 = 0 then - Mean $(\overline{X}, \overline{Y})$ of X and Y are _____ (4, 5)(4, 1)iii) i) ` | f) For a platyl | urtic comes | | | 2.80 | |-----------------------|--|------------|---------------------------------|-----------------| | 4) 8 ₂ < (| curtic curve | ii) | 8 ₂ > 0 | | | iii) $\aleph_2 = 0$ | | (بنيد | | | | 200 | regression coefficie | | | | | i) one | regression eveniere | -ii) | two | | | iii) zero | | iv) | three | | | | re on Advertisement | and scale | e have | | | | ve correlation | ii) | Negative correlation | on | | iii) Perfe | ct Negative correlation | | | | | | n coefficient always | | | | | i) 0 to | | ·ii) | -1 to 1 | | | iii) 0 to | ∞ | | -∞ to ∞ | | | j) Given tha | t, Mean = 1, Varianc | c = 3 and | $\mu_3 = 0$ then given d | listribution is | | | | | | | | 28.5 | tively skewed | ii) | | 1 | | sym | metric | iv) | leptokurtic | | | (O2) Attempt any | two of the following | : | [1 | 0 + 10 = 20 | | | e two Variables said | to be corr | elated? Describe sc | atter diagram | | and expl | ain its utility in the st | udy of co | rrelation. | | | L) Define r | nultiple and partial c | orrelation | coefficient for a tr | rivariate data. | | State the | eir limits. State the r | necessary | and sufficient con | dition for the | | three res | ression planes to coi | ncide. | 12 +713 + 7 | ュースルルシュ | | c) Derive | the two equations of | lines of | regression by using | g least square | | method | ė. | | | | | (A) Attempt and | four of the following the properties of regress = 1, then show that I leation coefficient bet a correlation coefficient with the correlation coefficient bet with the correlation coefficient between the betwe | 2: | [5+5 | +5+5=201 | | Q5) Attempt and | e properties of regres | sion coef | Ticients. | | | a) State ti | = 1 then show that 1 | R = 1 = | = R, | | | Pred If Roser | lation coefficient bet | ween two | random variables 3 | Cand Vie 0.8 | | find the | correlation coefficie | nt betwee | n | t and 1 15 0.5, | | -1-100 Jan | • | | X-12 12 | - V | | o > (i) 1 | 2X and 10Y | ii) | $\frac{1}{S}$ and $\frac{1}{S}$ | | | 16) | X Y | | | . \$ | | 1 km iii) | 2X and 10Y $\frac{X}{12}$ and $\frac{Y}{12}$ | 3 | 2 - 0 | | | Justif | y your answer. | | | | d) Compute regression coefficient from the following data. n 8, $$\sum (X-45)$$ 40, $\sum (X-45)^2 = 4400$ $$\Sigma$$ (Y 150) 280, Σ (Y-150)² = 167432, $$\Sigma(X = 45)(Y = 150) = 21680$$ - e) Describe scatter diagrams. - f) Explain the term Kurtosis. 8 = 20v/n - 00 = 1-184 Total No. of Pages: 3 # B.C.S. (Part - I) (Semester - I) Examination, November - 2014 STATISTICS (Paper - II) (New) # Probability and Discrete Probability Distributions Sub. Code: 59701 Day and Date: Wednesday, 05 - 11 - 2014 Total Marks: 50 Time: 12.00 noon. to 2.00 p.m. **Instructions:** - 1) All questions are compulsory. - 2) Figures to the right indicate full marks. - 3) Use of calculator and statistical table is allowed. #### (01) Choose the correct alternative: [10] - i) If sample space of an experiment has n sample points then its power set contains. - a) 3ⁿ subsets b) 2ⁿ subsets - c) 2n subsets - ts difficulty of column d) 3n subsets - ii) For a sample space $\Omega = \{e_1, e_2, e_3, e_4\}$, $P(e_1) = P(e_2) = \frac{1}{8}$ $P(e_3) = K$, $P(e_4) = \frac{1}{2}$. For what value of K will this be a probability model. - a) 0 b) $\frac{1}{3}$ c) $\frac{1}{4}$ - d) $\frac{1}{8}$ - iii) If A and B are independent events then p(A|B) is - a) P(A) b) P(B) c) $\frac{P(A)}{P(B)}$ d) 0 | | | | | 1 - 10 | | |--|--|---|--------|---|--| | iv) | Symbolic notation of occurance of both the events A and B is | | | | | | | a) | $A \cup B$ | b) | $A \cap B$ | | | | c) | (A∪B)′ | d) | (A∩B)′ | | | v) | If E | $E(x) = 2$ and $E(x^2) = 6$ then V | (x) is | Į. | | | | a) | 2 | b) | 4 | | | | c) | 6 | d) | 8 | | | vi) | If E | E(x) = 4 then $E(3x-1)$ is | | | | | | a) | 4 | b) | 3 | | | | c) | 11 | d) | 12 | | | vii |) If | $\kappa \sim B(10, 0.4)$ then mean of x i | s | . ** | | | | a) | 8 | b) | 2.4 | | | | c) | 10 | d) | 4 | | | vii | | distribution in which the prob | babili | ty at each draw is $\frac{1}{n}$ then the | | | | a) | Uniform | b) | Binomial | | | | c) | Poisson | d) | None of these | | | ix) If X and Y are poisson variates with parameters 2 and 3 then to distribution of X+Y is | | | | | | | | a) | P(1) | b) | P(6) | | | | c) | | d) | P(3) | | | х |) If | for a binomial variate mean is is | 12 an | d variance is 6 then the value of | | | | a |) 6 | b) | 24 | | | | c |) 12 | d) | 3 | | ### Q2) Attempt any two: [10 + 10 = 20] - a) If A and B are independent then show that - i) A and B' are Independent - ii) A' and B are Independent - iii) A' and B' are Independent - b) Define binomial distribution with parameters (n,p). Find mean and variance. - c) Define the following terms with suitable example. - i) Random experiment - ii) Sample space - iii) Event - iv) Power set - v) Impossible event ### Q3) Attempt any four: [5+5+5+5=20] - a) If $B \subseteq A$ then show that $P(B/A) = \frac{P(B)}{P(A)} & P(A|B) = 1$. - b) Suppose X is discrete random variable with p.m.f $$P(X=x) = \begin{cases} \frac{x+1}{10}, & x = 0,1,2,3 \\ 0, & O.w. \end{cases}$$ Find mean and variance of X. - c) Define mathematical expectation of a discrete random variable X and show that E(aX+b) = aE(x) + b where a and b are any constants. - d) Define discrete Uniform distribution and find its mean. - e) Find the recurrence relation for probabilities of poisson distribution. - f) Define pairwise and mutual independence for three events A,B and C. ### *** | Total | No. | of | Pa | ges | :4 | |--------|------|----|----|-----|----| | I ULAI | 110. | V | | - | | | Seat | | |------|--| | No. | | ## B.C.S. (Part - I) (Semester - I) Examination, November - 2017 STATISTICS (Paper - II) ### Probability and Discrete Probability Distributions Sub. Code: 59701 | Day and Date :Friday, | 17 - 11 - 2017 | |-------------------------|----------------| | Time: 3.00 p.m. to 5.00 | n m | Total Marks: 50 Instructions: - 1) All questions are compulsory. - 2) Figures to the right indicate full marks. - 3) Use of calculator and statistical table is allowed. | orrect Alternative. | |---------------------| | | [10] - a) If one card is drawn at random from a well shuffled pack of 52 card, then probability that the card is not a diamond is _____. - i) 13/52 ii) 3/4 iii) 1/13 - iv) 1/2 - b) If X has Poisson distribution, then _____. - i) Mean = Variance ii) Mean > Variance - iii) Mean < Variance - iv) None of these - c) _____ condition is true for independence of 2 events A and B - i) $P(A \cap B) = P(A).P(B)$ - ii) P(A/B)=P(A) iii) P(B/A)=P(B) iv) All the above d) Consider the following probability distribution: | X | <u> </u> | 78 | probabili | ty distrib | |------|----------|-----|-----------|------------| | | 1 | 2 | 3 | 4 | | P(X) | 1/4 | 1/4 | 1/4 | 1/4 | | The | | | 20.1 | 1/4 | The value of median is i) 2 ii) 3 iii) 1 iv) Not unique value e) If $X \rightarrow B(n,p)$ with mean 2 and variance 1 then values of n,p are i) 2,0.10 ii) 10,0.4 iii) 4,0.5 iv) None of these f) If A and B are independent events with P(A)=1/2, $P(A \cup B)=2/3$ then $P(B^c/A)=$ ______ i) 1/3 ii) 1/2 iii) 2/3 iv) 1 g) Probability of the event either A or B happens is i) P(A).P(B) ii) P(A)+P(B) iii) P(A∪B) iv) $P(A \cap B)$ h) In a single throw of a die, the outcomes of a variable of the type - i) Discrete random variable - ii) Continuous random variable - iii) Both (i) and (ii) - iv) None of these C - 40 Mean of discrete uniform distribution on 1,2,3,...... n is _____. i) $\frac{n+1}{2}$ ii) $\frac{n-1}{2}$ iii) $\frac{n(n-1)}{2}$ iv) $\frac{n}{2}+1$ j) If a fair coin is tossed twice then probability both heads is i) 0 ii) 1/8 iii) 1 iv) 1/4 Q2) Attempt any two of the following. [20] a) Define Discrete random variable. A discrete random variable X has following probability distribution: | X | -2 | -1 | 0 | 1 | 2 | 3 | |------|-----|----|-----|----|-----|----| | P(X) | 0.1 | k | 0.2 | 2k | 0.3 | 3k | Find - i) k - ii) Distribution function - iii) $P(X \ge 2)$ - iv) P(-2 < X < 2) - V) P(X = odd) - b) Define Binomial distribution. State real life examples, mean, variance, recurrence relation and additive property of binomial distribution. - c) Define probability of event. If A and B events defined on sample space, then prove that: - i) If A is subset of B then $P(A) \le P(B)$. - ii) $P(A \cup B) = P(A) + P(B) P(A \cap B)$. - Q3) Attempt any four of the following. [20] - a) If A and B are independent events then, show that - i) A and - ii) A° and B° are independent. - b) Define distribution function. State it's properties. - c) The customers are arriving to a service counter on an average rate of 2 customers per minute. Find probability that - i) no customer will arrive in one minute - ii) three customers will arrive in one minute. - iii) at least two will arrive in one minute - d) Let A,B,C are thre mutually exclusive and exhaustive events defined on sample space. If 3P(A)=2P(B)=P(C). Find $P(A \cup B)$. - e) If X is a r.v. with pmf $$P(X = x) = kx ; x = 1,2,3$$ Find k, E(X) and Var(X). f) Given that $P(A_1) = P(A_2) = P(A_3) = 1/3$ and $P(B/A_1) = 2/7$, $P(B/A_2) = 4/9$ and $P(B/A_3) = 1/5$. Find $P(A_1/B)$.