

| Seat |  |  |  |
|------|--|--|--|
| No.  |  |  |  |

### B.C.S. (Part – I) Examination, 2010 STATISTICS (Paper – II) (New) Probability and Probability Distribution

| Pı                                                    | obability and      | Probability Distr         | ibution                                                            |
|-------------------------------------------------------|--------------------|---------------------------|--------------------------------------------------------------------|
| Day and Date: Monday<br>Time: 3.00 p.m. to 6.00       |                    |                           | Total Marks: 100                                                   |
| 3) A                                                  | Use of calculato   | r and statistical tabl    | le is <b>allowed</b> .<br>e written in <b>one</b> a <b>nd same</b> |
|                                                       | SE                 | ECTION – I                | N.                                                                 |
| 1. Select correct alterna                             | ative:             |                           | a = <sup>40</sup>                                                  |
| I) Probability of im                                  | possible event     | is                        |                                                                    |
| a) 1                                                  | b) 0.5             | c) 0                      | d) none of these                                                   |
| <ul><li>II) A coin is tossed u<br/>space is</li></ul> | ntil 'tail' appear | rs for first time, for th | is experiment the sample                                           |
| a) { }                                                |                    | b) Countably              | finite                                                             |
| c) Countably inf                                      | inite              | d) Uncountab              | oly infinite                                                       |
| III) Probability that a                               | leap year selec    | ted at random will c      | ontain 53 Sundays is                                               |
| a) 6/7                                                | b) 1/7             | c) 2/7                    | d) None of these                                                   |
| IV) If A and B are $P(A' \cap B')$ is                 | independent ev     | rent with $P(A) = 0$ .    | 5  and  P(B) = 0.4  then                                           |
| a) 0.3                                                | b) 0.2             | c) 0.9                    | d) None of these                                                   |
| V) If A and B are inc                                 | dependent event    | with $P(A) = 0.2$ and     | P(B) = 0.6 then $P(A B)$                                           |
| a) 0.2                                                | b) 0.6             | c) 1/3                    | d) None of these                                                   |
| VI) If $A \subset B$ , with po                        | (A) = 0.2 and P    | (B) = 0.5  then  P(B A)   |                                                                    |
| a) 0                                                  | b) 0.5             | c) 1                      | d) None of these                                                   |



| VII) If M <sub>0</sub> is mode of ra          | andom variable X      | then P[M <sub>0</sub> ] is    | 3                                                                                              |
|-----------------------------------------------|-----------------------|-------------------------------|------------------------------------------------------------------------------------------------|
| a) Maximum                                    | b) Minimum            | c) 1                          | d) 0                                                                                           |
| VIII) If $E(X) = 5$ , then                    | E(2X + 4) is          |                               |                                                                                                |
| a) 5                                          | b) 14                 | c) 4                          | d) 10                                                                                          |
| IX) If $X \sim B$ (10, 0.5),                  | then E (X) is         |                               |                                                                                                |
| a) 5                                          | b) 2.5                | c) 10                         | d) 0.5                                                                                         |
| X) If X follows Poiss                         | on distribution wit   | h mean 3 the                  | 5                                                                                              |
| a) 6                                          | b) 3                  | c) 1.5                        | d) None of these                                                                               |
| 2. Attempt any two of                         | the following:        |                               |                                                                                                |
| 1) Explain the terms                          | ;                     |                               |                                                                                                |
| a) Sample space                               |                       |                               |                                                                                                |
| b) Event                                      |                       |                               |                                                                                                |
| c) Probability of                             | an event              |                               |                                                                                                |
| d) Mutually excl                              | usive event           |                               | (32)                                                                                           |
| e) Discrete samp                              | le space              |                               |                                                                                                |
| <ol><li>I) Define pair w<br/>event.</li></ol> | ise independence a    | nd mutual ind                 | dependence in case of three                                                                    |
| 221, 222 and<br>be the event the              | one ticket drawn from | om the box at ket drawn is 1. | , 112, 121, 211, 122, 212, random. Let Ai ( $i = 1, 2, 3$ ). Test whether Ai ( $i = 1, 2, 3$ ) |
| 3) Illustrate the terr                        | ns :                  |                               |                                                                                                |
| a) Discrete rand                              | lom variable          |                               |                                                                                                |
| b) p.m.f. of disc                             | crete random variab   | le                            |                                                                                                |
| c) Distribution                               | function of discrete  | random varia                  | ble                                                                                            |
| d) Mean and va                                | riance of discrete ra | andom variabl                 | e                                                                                              |

Attempt any four of the following :

e) Probability Generating function

- 1) For any two event A and B, show that  $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 2) Let A, B and C be three mutually exclusive and exhaustive event defined on a probability space  $\Omega$ . If 3P(A) = 2P(B) = P(C). Find  $P(A \cup B)$ .

| 3)    | If A and B are indep                                                                                                              | endent event          | 03 WA •00000001 000001 0 V 00 0 |                        |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------|------------------------|--|--|--|
| 4)    | ) If A and B are independent event then show that A' and B' are independent.  (a) Let X be a discrete random variable with p.m.f. |                       |                                 |                        |  |  |  |
|       | P(X = x) = X/15                                                                                                                   | andom variable w      | vith p.m.f.                     |                        |  |  |  |
|       | P(X = x) = X/15                                                                                                                   | x = 1, 2, 3, 4        | , 5                             |                        |  |  |  |
|       | Find a) E (X)                                                                                                                     | otherwise             |                                 |                        |  |  |  |
| 5)    |                                                                                                                                   | b) E $(2X + 5)$       | )                               |                        |  |  |  |
|       | Define discrete unifo uniform r.v. taking v                                                                                       |                       |                                 |                        |  |  |  |
| 6)    | State the probability find variance.                                                                                              | generating funct      | ion of Poisson di               | stribution and hence   |  |  |  |
|       |                                                                                                                                   | SECTIO                | N - II                          |                        |  |  |  |
| 4. Se | elect correct alternative                                                                                                         | :                     | £                               |                        |  |  |  |
| I)    | Lack of memory pro                                                                                                                | perty is followed     | by distribution                 |                        |  |  |  |
|       | a) Exponential                                                                                                                    | posto io ionowed      | Harrison Warren to the Control  |                        |  |  |  |
|       | a) NT- 1                                                                                                                          |                       | b) Uniform                      |                        |  |  |  |
| т     |                                                                                                                                   | edig ye,              | ,                               | *                      |  |  |  |
| ш)    | Box-Muller transform                                                                                                              | nation is used for    |                                 |                        |  |  |  |
|       | a) Fitting of distribu                                                                                                            | tion                  |                                 |                        |  |  |  |
| _     | c) Simulation                                                                                                                     |                       | d) None of above                | e , in                 |  |  |  |
| III)  | p.d.f. of r.v. X is give                                                                                                          | n by, $f(x) = 3x^2$ , | 0 < x < 1; = 0, oth             | nerwise, then E (X) is |  |  |  |
|       | a) 3/4                                                                                                                            | b) 0                  | c) 1/4                          | d) 2/3                 |  |  |  |
| IV)   | $X \sim \cup (1, 5)$ , then var                                                                                                   | iance of X is         |                                 | The second second      |  |  |  |
|       | a) 1                                                                                                                              | b) 1/2                | c) 4/3                          | d) 1/4                 |  |  |  |
| V)    | If $X \sim N(0, 1)$ , $Y \sim 1$                                                                                                  | V (0. 1) and X ar     | nd Y are independe              |                        |  |  |  |
|       | a) 0                                                                                                                              | b) 1                  | c) 2                            | d) None of $A$         |  |  |  |
|       | 10 mm                                                                                                                             | - *                   |                                 |                        |  |  |  |
| VI)   | $X \sim \chi^2$ with 5 degree                                                                                                     | s of freedom the      | n variance of X is              |                        |  |  |  |
|       | a) 5                                                                                                                              | b) 10                 | c) 25                           | d) 0                   |  |  |  |
| VII)  | If r.v. X has t-distribu                                                                                                          | ition with n degr     | ees of freedom the              | en X <sup>2</sup> has  |  |  |  |
|       | a) t-distribution with                                                                                                            |                       |                                 |                        |  |  |  |
|       | b) Fn, n distribution                                                                                                             |                       |                                 |                        |  |  |  |
|       | c) F1, n distribution                                                                                                             |                       |                                 |                        |  |  |  |
|       | d) Fn, 1 distribution                                                                                                             |                       |                                 |                        |  |  |  |
| VIII) | Let ry Y has E distri                                                                                                             | hution with n1 a      | nd n2 degrees of                | <b>.</b>               |  |  |  |
|       | Let r.v. X has F distribetween                                                                                                    | Dution with hi a      | ine ine degrees of              | freedom. Then X lies   |  |  |  |
|       | a) n1 and n2                                                                                                                      | b) 0 and n1           | c) 0 and n2                     |                        |  |  |  |
|       |                                                                                                                                   | c, c                  | ,                               | d) None of these       |  |  |  |



| - 54                                                                     |                                                      |
|--------------------------------------------------------------------------|------------------------------------------------------|
| IX) Region of rejection is called                                        | d as                                                 |
| a) level of significance                                                 | b) critical region                                   |
| c) acceptance region                                                     | d) none of these                                     |
| X) Rejecting H <sub>0</sub> when it is Tr                                | ue is                                                |
| a) Type one error                                                        | b) Type two error                                    |
| c) test criteria                                                         | d) level of significance                             |
| 5. Attempt any two of the follow                                         | wing:                                                |
| 1) Explain the terms:                                                    |                                                      |
| a) Continuous sample space                                               | ce b) Continuous random variable                     |
| c) c.d.f. of continuous r.v.                                             | d) Expectation of continuous r.v.                    |
| e) Variance of continuous                                                | r.v.                                                 |
| <ol><li>Define Normal, chi-square<br/>Normal and</li></ol>               | e, t and F distribution. Also state relation between |
| a) chi-square b) t                                                       | c) F distribution                                    |
| 3) Explain Large sample test                                             | for testing                                          |
| a) mean                                                                  | b) proportion                                        |
| 6. Attempt any four of the follo                                         | owing:                                               |
| 1) Let X be a continuous r.v.                                            |                                                      |
| $f(x) = kx ,  0 \le x \le 1$                                             |                                                      |
| $= \mathbf{k}$ , $1 \le \mathbf{x} \le 2$                                |                                                      |
| $= -kx + 3k,  2 \le x \le 3$ $= 0 \qquad \text{otherwise}$               |                                                      |
| Find:                                                                    |                                                      |
| (I) $\mathbf{k}$ II) $\mathbf{E}(\mathbf{X})$                            |                                                      |
| 2) Let $X \sim N(3, 4)$ , Find                                           | n (1)                                                |
| a) $P[X > 5]$ b) 1                                                       | P[x<1] c) $P[X<6]$                                   |
| d) $P[2 < X < 6]$ e) 1                                                   | P[x > 0]                                             |
| <ol> <li>State Mean, Variance, a<br/>Chi-square distribution.</li> </ol> | additive property and Normal approximation           |
| 4) Explain the terms:                                                    |                                                      |
| a) Parameter and statistic                                               |                                                      |
| b) Types of error                                                        |                                                      |
| 5) Give merits and demerits                                              | of simulation                                        |

6) Find variance of exponential distribution.



| Seat |  |
|------|--|
| No.  |  |

### B.C.S. (Part – I) (Semester – I) Examination, 2011 STATISTICS (Paper – II) Probability and Discrete Probability Distribution

| Day and Date: Thursday, 12                                                                                | -5-2011            | *                                                                        | Total Morks : 40      |
|-----------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------|-----------------------|
| Time: 11.00 a.m. to 1.00 p.r                                                                              |                    |                                                                          | Total Marks: 40       |
| Instructions: 1) All que 2) Figur 3) Use o                                                                | es to the right in | p <b>ulsory</b> .<br>Idicate <b>full</b> marks.<br>Id Statistical tables | s is <b>allowed</b> . |
| 1. Choose the correct altern                                                                              | native :           |                                                                          | 8                     |
| <ul> <li>i) If P(A∪B) = P(A)</li> <li>a) Equally likely</li> <li>c) Exhaustive</li> </ul>                 |                    | ents A and B are b) Mutually excl d) Independent                         | usive                 |
| <ul><li>ii) For a discrete randon</li><li>a) X E(a) + b</li></ul>                                         |                    |                                                                          | d) None of these      |
| <ul><li>iii) If F(x) be distributio</li><li>a) Decreasing function</li><li>c) Negative function</li></ul> | on                 | <ul><li>b) Increasing fur</li><li>d) None of these</li></ul>             |                       |
| iv) The variance of Binor  a) n p                                                                         |                    | s<br>c) npq                                                              | d) p q                |
| <ul><li>v) Probability of an important a) 1</li></ul>                                                     | b) 0               | c) - 1                                                                   | d) None of these      |
| vi) Probability of an even                                                                                | 500                |                                                                          |                       |
| <ul><li>a) - 1 to + 1</li><li>vii) If A and B are independent</li></ul>                                   |                    |                                                                          | d) 0 to ∞             |
|                                                                                                           | b) $P(A \cup B)$   |                                                                          | d) $P(A)/P(B)$        |
| viii) If $X \rightarrow B(n, p)$ and I                                                                    | E(X) = 5/3 and $Q$ | $=\frac{2}{3}$ then the value                                            | of n is               |
| a) 25                                                                                                     | b) 1/25            | c) 1/5                                                                   | d) 5                  |

## 

### 2. Attempt any two of the following:

a) Let X be a discrete random variable with p.m.f.

$$P(X = x) = 1/15,$$
 for  $x = 1, 2, ----- 15$   
= 0 otherwise

Find:

- i) E(X)
- ii) E(3X+5) iii) Var(X) iv) Var(3X+5)
- b) Define:
  - i) Discrete sample space
  - ii) Power set
  - iii) Baye's Theorem
  - iv) Conditional Probability.
- c) Define Binomial distribution. Establish recurrence relation for probabilities. If  $X \to B$  (n = 10, p = 0.3) find P(X = 1).

### 3. Attempt any four of the following:

a) For three independent events A, B, C on a sample space,

Prove that, i) A and B are independent.

- ii) A, B and C are pair wise independent
- b) State and prove additive property of poisson distribution.
- c) Let X be a discrete uniform random variable taking the values 1, 2, 3, 4, 5, 6. Find:
  - i)  $P(X \le 2)$
- ii) P(X > 3)
- d) If A and B are two events defined on  $\Omega$  such that  $A \subset B$ , show that  $P(A) \leq P(B)$ .
- e) If A and B are independent with P(A) = 1/4, P(B) = 1/3Find:

  - i)  $P(A \cup B)$  ii)  $P(A^{c} \cap B^{c})$
- f) If  $X \rightarrow P(m = 2)$  find:
  - i) P(X = 1)
- ii)  $P(X \le 1)$

| Seat |  |
|------|--|
| No.  |  |

Total No. of Pages: 3

## B.C.S.(Part - I) (Semester -I)Examination, 2013 STATISTICS (PAPER - II)

|           | P              | roba              | bility & Discret                            | e Probabi                   | lity Distributions                           |
|-----------|----------------|-------------------|---------------------------------------------|-----------------------------|----------------------------------------------|
|           |                |                   | Sub. C                                      | ode : 559                   | 78                                           |
| Day and D | ate :          | Mon               | day, 15 - 04 - 2013                         |                             | Total Marks : 50                             |
| Time: 3.  | 00 p.          | m. to             | 5.00 p.m.                                   |                             |                                              |
| Instructi | ions :         | 1)                | All questions are con                       | mpulsory                    |                                              |
|           |                | 2)                | Figures to the right                        |                             | marks.                                       |
|           |                | 3)                | Use of calculators a                        |                             |                                              |
| Q1) Selec | t the          | corre             | ect alternative to an                       | swer the fo                 | llowing sub-questions : [10]                 |
| a)        | IfAa           | and B             | are mutually exclusive                      | sive events t               | then P(A/B) is equal to                      |
|           | i)             | 1                 |                                             | ii)                         | P(A)                                         |
|           | iii)           | 0                 |                                             | iv)                         | P(B)                                         |
| b)        | Whie           | ch of t<br>single | the following is a pa<br>e card from a deek | ir of mutual<br>of 52 playi | ly exclusive events in the drawing ng cards? |
|           | i)             | A he              | art and a queen                             | ii)                         | An even number and a spade                   |
|           | iii)           | A clu             | ub and red card                             | iv)                         | An ace and an odd number                     |
| c)        | If A :<br>P(A' | and B<br>nB)=     | are independent e                           | events with                 | P(A)=0.4, $P(B)=0.5$ then                    |
|           | i)             | 0.03              |                                             | -ii)                        | 0.9                                          |
|           | iii)           | 0.1               |                                             | iv)                         | 0.3                                          |
| d)        | Whi            | ch of             | the following state                         | ment is true                | ?                                            |
|           | i)             | A an              | d A' form partition                         | of $\Omega$                 |                                              |
|           | ii)            | A an              | d $\Omega$ form partition                   | of $\Omega$                 | -                                            |

| - | 1 | 1 |
|---|---|---|
|   | 1 | 1 |

|     |      | iii)                                                                                     | A and A' do not form partition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on oi  | 52                                           |  |  |
|-----|------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------|--|--|
|     |      | iv)                                                                                      | Only two events cannot form a partition of $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                              |  |  |
|     | e)   | If a discrete sample space contains 5 elements then its power set with contain elements. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                              |  |  |
|     |      | i)                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ii)    | 10                                           |  |  |
|     |      | iii)                                                                                     | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iv)    | 25                                           |  |  |
|     | f)   |                                                                                          | screte random variable takes vaif the mean of x is 6then the v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 1, 2,, k with equal probabilities of k is    |  |  |
|     |      | i)                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ii)    | 13                                           |  |  |
|     |      | iii)                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iv)    | 11                                           |  |  |
|     | g)   | Mea                                                                                      | an = variance is true for which o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of the | following discrete distribution              |  |  |
|     | \$   | i)                                                                                       | Discrete uniform distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ii)    | binomial distribution                        |  |  |
|     |      | ∕iii)                                                                                    | poisson distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iv)    | none of these                                |  |  |
|     | h)   | If fo                                                                                    | r a binomial variate the mean is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s 9 an | nd variance is 6 then the value of           |  |  |
|     |      | (12)                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 1                                            |  |  |
|     |      | i)<br>                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ii)    | 12                                           |  |  |
|     |      | iii)                                                                                     | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iv)    | 30                                           |  |  |
|     | i)   | If E                                                                                     | (x) = 5  then  E(2x+6)  is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                              |  |  |
|     |      | i)                                                                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ii)    | 10                                           |  |  |
|     |      | iii)                                                                                     | . 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iv)    | 20                                           |  |  |
|     | j)   | If E                                                                                     | $(x) = m$ then $E(x-m)^2$ represent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ts     |                                              |  |  |
|     |      | i)                                                                                       | Variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ii)    | μ <sub>2</sub> (Second central movement)     |  |  |
|     |      | iii)                                                                                     | both (i) and (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | iv)    | none of these                                |  |  |
| Q2) | Atte | mpt a                                                                                    | any Two of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | [20]                                         |  |  |
|     | a)   | If P(                                                                                    | $(A) = x$ , $P(B) = y$ , $P(A \cap B) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | z the  | en express $P(A \cup B)$ , $P(A' \cap B')$ , |  |  |
|     |      | P(A'                                                                                     | $\cap B$ ), $P(A' \cup B)$ and $P(A' \cup B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ') in  | terms of x, v and $\neq$                     |  |  |
|     |      |                                                                                          | The second secon | 5      | , J                                          |  |  |

- b) Define binomial distribution with parameters n and P. Find its pgf, hence or otherwise find mean and variance of the distribution.
- c) If A and B are independent then show that:
  - i) A and B' are independent.
  - ii) A' and B are independent.
  - iii) A' and B'are independent.

### 03) Attempt any Four of the following:

[20]

- a) If  $A \subseteq B$  then show that  $P(A) \subseteq P(B)$
- b) Define partition of the sample space. write the statement of Bayes' theorem.
- c) Define expectation of a random variable x. Show that E(ax+b) = aE(x) + b
- d) Find the recurreance relation for probabilities of binomial distribution.
- e) Find mean and variance for Poisson distribution.
- f) Suppose x is a discrete random variable with Pmf

$$P(x=x) = \begin{cases} k & x^2, & x = 1,2,3 \\ 0 & \text{ow} \end{cases}$$

Find k and E(x).



C - 257

Total No. of Pages: 3

# B.C.S. (Part - I) (Semester - II) Examination, 2013

## STATISTICS (Paper - III)

**Descriptive Statistics - II** 

Sub. Code: 58180

y and Date: Saturday, 04 - 05 - 2013

Total Marks: 50

me: 3.00 p.m. to 5.00 p.m.

All questions are compulsory. Instructions: 1)

- Use of calculators and statistical table is allowed. 2)
- Figures to the right in the bracket indicate full marks. 2)
- 1) Choose the correct alternative:



- a) If  $\aleph_2 < 0$ , then the frequency curve is  $\angle$ 
  - mesokurtic i)

platykurtic

iii) leptokurtic

- iv) any of the above
- b) If  $r = \pm 1$ , the angle between the two lines of regression is
  - 90°

45° ii)

00 VIII)

- iv) 30°
- c) If there exists perfect correlation between X and Y then correlation coefficient (r) is
- ジー・1)をのりをでいる

iii) -1

- d) If  $byx = -\left(\frac{1}{4}\right)$  and bxy = -1 then correlation coefficient (r) is \_\_\_\_
  - i)  $\frac{1}{4}$

iii)

- e) Given two regression lines as X + 4Y 8 = 0 and X 2Y + 4 = 0 then
  - Mean  $(\overline{X}, \overline{Y})$  of X and Y are \_\_\_\_\_

(4, 5)(4, 1)iii)

i) `

| f) For a platyl       | urtic comes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                 | 2.80            |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------|-----------------|
| 4) 8 <sub>2</sub> < ( | curtic curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ii)        | <b>8</b> <sub>2</sub> > 0       |                 |
| iii) $\aleph_2 = 0$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (بنيد      |                                 |                 |
| 200                   | regression coefficie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                 |                 |
| i) one                | regression eveniere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -ii)       | two                             |                 |
| iii) zero             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iv)        | three                           |                 |
|                       | re on Advertisement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and scale  | e have                          |                 |
|                       | ve correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ii)        | Negative correlation            | on              |
| iii) Perfe            | ct Negative correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                 |                 |
|                       | n coefficient always                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                 |                 |
| i) 0 to               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·ii)       | -1 to 1                         |                 |
| iii) 0 to             | ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | -∞ to ∞                         |                 |
| j) Given tha          | t, Mean = 1, Varianc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c = 3 and  | $\mu_3 = 0$ then given d        | listribution is |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                 |                 |
| 28.5                  | tively skewed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ii)        |                                 | 1               |
| sym                   | metric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iv)        | leptokurtic                     |                 |
| (O2) Attempt any      | two of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :          | [1                              | 0 + 10 = 20     |
|                       | e two Variables said                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to be corr | elated? Describe sc             | atter diagram   |
| and expl              | ain its utility in the st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | udy of co  | rrelation.                      |                 |
| L) Define r           | nultiple and partial c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orrelation | coefficient for a tr            | rivariate data. |
| State the             | eir limits. State the r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | necessary  | and sufficient con              | dition for the  |
| three res             | ression planes to coi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ncide.     | 12 +713 + 7                     | ュースルルシュ         |
| c) Derive             | the two equations of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lines of   | regression by using             | g least square  |
| method                | ė.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                 |                 |
| (A) Attempt and       | four of the following the properties of regress = 1, then show that I leation coefficient bet a correlation coefficient with the correlation coefficient bet with the correlation coefficient between the coefficient betwe | 2:         | [5+5                            | +5+5=201        |
| Q5) Attempt and       | e properties of regres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sion coef  | Ticients.                       |                 |
| a) State ti           | = 1 then show that $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R = 1 =    | = R,                            |                 |
| Pred If Roser         | lation coefficient bet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ween two   | random variables 3              | Cand Vie 0.8    |
| find the              | correlation coefficie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt betwee  | n                               | t and 1 15 0.5, |
| -1-100 Jan            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | X-12 12                         | - V             |
| o > (i) 1             | 2X and 10Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ii)        | $\frac{1}{S}$ and $\frac{1}{S}$ |                 |
| 16)                   | X Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                 | . \$            |
| 1 km iii)             | 2X and 10Y $\frac{X}{12}$ and $\frac{Y}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3          | 2 - 0                           |                 |
| Justif                | y your answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                 |                 |

d) Compute regression coefficient from the following data.

n 8, 
$$\sum (X-45)$$
 40,  $\sum (X-45)^2 = 4400$ 

$$\Sigma$$
(Y 150) 280,  $\Sigma$ (Y-150)<sup>2</sup> = 167432,

$$\Sigma(X = 45)(Y = 150) = 21680$$

- e) Describe scatter diagrams.
- f) Explain the term Kurtosis.

8 = 20v/n - 00 =

1-184

Total No. of Pages: 3

# B.C.S. (Part - I) (Semester - I) Examination, November - 2014 STATISTICS (Paper - II) (New)

# Probability and Discrete Probability Distributions Sub. Code: 59701

Day and Date: Wednesday, 05 - 11 - 2014

Total Marks: 50

Time: 12.00 noon. to 2.00 p.m.

**Instructions:** 

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of calculator and statistical table is allowed.

#### (01) Choose the correct alternative:

[10]

- i) If sample space of an experiment has n sample points then its power set contains.
  - a) 3<sup>n</sup> subsets

b) 2<sup>n</sup> subsets

- c) 2n subsets
- ts difficulty of column d) 3n subsets
- ii) For a sample space  $\Omega = \{e_1, e_2, e_3, e_4\}$ ,  $P(e_1) = P(e_2) = \frac{1}{8}$   $P(e_3) = K$ ,  $P(e_4) = \frac{1}{2}$ . For what value of K will this be a probability model.
  - a) 0

b)  $\frac{1}{3}$ 

c)  $\frac{1}{4}$ 

- d)  $\frac{1}{8}$
- iii) If A and B are independent events then p(A|B) is
  - a) P(A)

b) P(B)

c)  $\frac{P(A)}{P(B)}$ 

d) 0

|                                                                                            |                                                              |                                           |        | 1 - 10                                    |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|--------|-------------------------------------------|--|
| iv)                                                                                        | Symbolic notation of occurance of both the events A and B is |                                           |        |                                           |  |
|                                                                                            | a)                                                           | $A \cup B$                                | b)     | $A \cap B$                                |  |
|                                                                                            | c)                                                           | (A∪B)′                                    | d)     | (A∩B)′                                    |  |
| v)                                                                                         | If E                                                         | $E(x) = 2$ and $E(x^2) = 6$ then V        | (x) is | Į.                                        |  |
|                                                                                            | a)                                                           | 2                                         | b)     | 4                                         |  |
|                                                                                            | c)                                                           | 6                                         | d)     | 8                                         |  |
| vi)                                                                                        | If E                                                         | E(x) = 4 then $E(3x-1)$ is                |        |                                           |  |
|                                                                                            | a)                                                           | 4                                         | b)     | 3                                         |  |
|                                                                                            | c)                                                           | 11                                        | d)     | 12                                        |  |
| vii                                                                                        | ) If                                                         | $\kappa \sim B(10, 0.4)$ then mean of x i | s      | . **                                      |  |
|                                                                                            | a)                                                           | 8                                         | b)     | 2.4                                       |  |
|                                                                                            | c)                                                           | 10                                        | d)     | 4                                         |  |
| vii                                                                                        |                                                              | distribution in which the prob            | babili | ty at each draw is $\frac{1}{n}$ then the |  |
|                                                                                            | a)                                                           | Uniform                                   | b)     | Binomial                                  |  |
|                                                                                            | c)                                                           | Poisson                                   | d)     | None of these                             |  |
| ix) If X and Y are poisson variates with parameters 2 and 3 then to distribution of X+Y is |                                                              |                                           |        |                                           |  |
|                                                                                            | a)                                                           | P(1)                                      | b)     | P(6)                                      |  |
|                                                                                            | c)                                                           |                                           | d)     | P(3)                                      |  |
| х                                                                                          | ) If                                                         | for a binomial variate mean is is         | 12 an  | d variance is 6 then the value of         |  |
|                                                                                            | a                                                            | ) 6                                       | b)     | 24                                        |  |
|                                                                                            | c                                                            | ) 12                                      | d)     | 3                                         |  |

### Q2) Attempt any two:

[10 + 10 = 20]

- a) If A and B are independent then show that
  - i) A and B' are Independent
  - ii) A' and B are Independent
  - iii) A' and B' are Independent
- b) Define binomial distribution with parameters (n,p). Find mean and variance.
- c) Define the following terms with suitable example.
  - i) Random experiment
  - ii) Sample space
  - iii) Event
  - iv) Power set
  - v) Impossible event

### Q3) Attempt any four:

[5+5+5+5=20]

- a) If  $B \subseteq A$  then show that  $P(B/A) = \frac{P(B)}{P(A)} & P(A|B) = 1$ .
- b) Suppose X is discrete random variable with p.m.f

$$P(X=x) = \begin{cases} \frac{x+1}{10}, & x = 0,1,2,3 \\ 0, & O.w. \end{cases}$$
 Find mean and variance of X.

- c) Define mathematical expectation of a discrete random variable X and show that E(aX+b) = aE(x) + b where a and b are any constants.
- d) Define discrete Uniform distribution and find its mean.
- e) Find the recurrence relation for probabilities of poisson distribution.
- f) Define pairwise and mutual independence for three events A,B and C.

### \*\*\*

| Total  | No.  | of | Pa | ges | :4 |
|--------|------|----|----|-----|----|
| I ULAI | 110. | V  |    | -   |    |

| Seat |  |
|------|--|
| No.  |  |

## B.C.S. (Part - I) (Semester - I) Examination, November - 2017 STATISTICS (Paper - II)

### Probability and Discrete Probability Distributions Sub. Code: 59701

| Day and Date :Friday,   | 17 - 11 - 2017 |
|-------------------------|----------------|
| Time: 3.00 p.m. to 5.00 | n m            |

Total Marks: 50

Instructions:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of calculator and statistical table is allowed.

| orrect Alternative. |
|---------------------|
|                     |

[10]

- a) If one card is drawn at random from a well shuffled pack of 52 card, then probability that the card is not a diamond is \_\_\_\_\_.
  - i) 13/52

ii) 3/4

iii) 1/13

- iv) 1/2
- b) If X has Poisson distribution, then \_\_\_\_\_.
  - i) Mean = Variance

ii) Mean > Variance

- iii) Mean < Variance
- iv) None of these
- c) \_\_\_\_\_ condition is true for independence of 2 events A and B
  - i)  $P(A \cap B) = P(A).P(B)$
- ii) P(A/B)=P(A)

iii) P(B/A)=P(B)

iv) All the above

d) Consider the following probability distribution:

| X    | <u> </u> | 78  | probabili | ty distrib |
|------|----------|-----|-----------|------------|
|      | 1        | 2   | 3         | 4          |
| P(X) | 1/4      | 1/4 | 1/4       | 1/4        |
| The  |          |     | 20.1      | 1/4        |

The value of median is

i) 2

ii) 3

iii) 1

iv) Not unique value

e) If  $X \rightarrow B(n,p)$  with mean 2 and variance 1 then values of n,p are

i) 2,0.10

ii) 10,0.4

iii) 4,0.5

iv) None of these

f) If A and B are independent events with P(A)=1/2,  $P(A \cup B)=2/3$  then  $P(B^c/A)=$ \_\_\_\_\_\_

i) 1/3

ii) 1/2

iii) 2/3

iv) 1

g) Probability of the event either A or B happens is

i) P(A).P(B)

ii) P(A)+P(B)

iii) P(A∪B)

iv)  $P(A \cap B)$ 

h) In a single throw of a die, the outcomes of a variable of the type

- i) Discrete random variable
- ii) Continuous random variable

- iii) Both (i) and (ii)
- iv) None of these

C - 40

Mean of discrete uniform distribution on 1,2,3,...... n is \_\_\_\_\_.

i)  $\frac{n+1}{2}$ 

ii)  $\frac{n-1}{2}$ 

iii)  $\frac{n(n-1)}{2}$ 

iv)  $\frac{n}{2}+1$ 

j) If a fair coin is tossed twice then probability both heads is

i) 0

ii) 1/8

iii) 1

iv) 1/4

Q2) Attempt any two of the following.

[20]

a) Define Discrete random variable. A discrete random variable X has following probability distribution:

| X    | -2  | -1 | 0   | 1  | 2   | 3  |
|------|-----|----|-----|----|-----|----|
| P(X) | 0.1 | k  | 0.2 | 2k | 0.3 | 3k |

Find

- i) k
- ii) Distribution function
- iii)  $P(X \ge 2)$
- iv) P(-2 < X < 2)
- V) P(X = odd)
- b) Define Binomial distribution. State real life examples, mean, variance, recurrence relation and additive property of binomial distribution.

- c) Define probability of event. If A and B events defined on sample space, then prove that:
  - i) If A is subset of B then  $P(A) \le P(B)$ .
  - ii)  $P(A \cup B) = P(A) + P(B) P(A \cap B)$ .
- Q3) Attempt any four of the following.

[20]

- a) If A and B are independent events then, show that
  - i) A and

- ii) A° and B° are independent.
- b) Define distribution function. State it's properties.
- c) The customers are arriving to a service counter on an average rate of 2 customers per minute. Find probability that
  - i) no customer will arrive in one minute
  - ii) three customers will arrive in one minute.
  - iii) at least two will arrive in one minute
- d) Let A,B,C are thre mutually exclusive and exhaustive events defined on sample space. If 3P(A)=2P(B)=P(C). Find  $P(A \cup B)$ .
- e) If X is a r.v. with pmf

$$P(X = x) = kx ; x = 1,2,3$$

Find k, E(X) and Var(X).

f) Given that  $P(A_1) = P(A_2) = P(A_3) = 1/3$  and  $P(B/A_1) = 2/7$ ,  $P(B/A_2) = 4/9$  and  $P(B/A_3) = 1/5$ . Find  $P(A_1/B)$ .

