

Seat		
No.		

B.Sc. (Part - I) (Semester - I) Examination, 2011 STATISTICS (Paper - II) **Elementary Probability Theory** Sub. Code: 47817

Day and Date: Monday, 14-11-2011

Total Marks: 40

Time: 10.30 a.m. to 12.30 p.m.

Instructions: 1) All questions are compulsory.

2) Figures to the right indicate full marks.

1. Choose the correct alternative:

8

- i) The sample space of an experiment consists of 'n' points, its power set will contain the following number of points.
 - a) 2ⁿ
- b) 3ⁿ
- c) 2^{n+1}
- d) 3^{n+1}
- ii) If A and B are any two events then the probability of occurrence of either A or B is given by
 - a) $P(A \cap B)$

b) $P(A \cup B)$

c) P(A)

- d) $P(A \cup B^{c})$
- iii) A bag contains 5 white and 6 black balls. A ball is drawn at random. The probability that the ball is white will be
 - a) $\frac{2}{33}$ b) $\frac{5}{6}$
- c) $\frac{6}{11}$
- d) $\frac{5}{11}$

- iv) Which one of the following is false?
 - a) $P(A \cap B) \leq P(A)$
 - b) $P(A) \leq P(A \cup B)$
 - c) $P(A \cup B) \le P(A) + P(B)$
 - d) P(A) > 1

v) If A and B are independent events, $P(A) = 0.8$,	$P(A \cap B) = 0.2$ then $P(B)$ is
--	------------------------------------

a) 0.25

b) 0.2

c) 1

d) 0.16

vi) A card is drawn from a pack of cards. The probability that it will be king card given that it is black card will be

a) $\frac{1}{52}$

b) $\frac{1}{2}$

c) $\frac{13}{52}$

d) $\frac{4}{52}$

vii) For any event B, $P(\phi|B)$ is

a) 1

b) 0

c) P(B)

d) $\frac{1}{2}$

viii) If A and B are two independent events then P(B|A) is

a) P(A)

b) P(B)

c) $P(A \cap B)$

d) $P(A \cup B)$

2. Attempt any two of the following:

- i) State and prove addition law of probability for two events A and B.
- ii) State and prove Baye's theorem.
- iii) Define pairwise and mutual independence of three events A, B and C. Let $\Omega = \{1, 2, 3, 4\}$ and each has equal probability $\frac{1}{4}$. Let $A = \{1, 2\}$; $B = \{1, 3\}$ and $C = \{1, 4\}$. Examine independence of A, B and C.

3. Attempt any four of the following:

- i) Define:
 - a) Apriori definition and
 - b) Axiomatic definition of probability.
- ii) Prove that:

a)
$$P(A \cap B^C) = P(A) - P(A \cap B)$$

- b) $P(\phi) = 0$
- iii) A coin is tossed 3 times, find probability of getting
 - a) atleast two heads
 - b) atmost two heads
- iv) Define:
 - a) Partition of sample space
 - b) Conditional probability.
 - v) If A and B are independent events, show that A^C and B^C are also independent.
- vi) If A⊂B then show that

a)
$$P(B | A) = 1$$

b)
$$P(A|B) = \frac{P(A)}{P(B)}$$

Seat	
No.	

	B.Sc. (Part – I) (Semester – I) Examination, 2012 STATISTICS (Paper – II) (Elementary Probability Theory) Sub. Code: 47817						
	d Date : Friday, 4-5-20 11.00 a.m. to 1.00 p.m			Total Marks: 40			
Ins	structions: i) All que ii) Figure	estions are comp es to the right ind					
1. Ch	oose the most correc	t alternative :	*	8			
i)	Which of the following	g is not an examp	le of Random expe	eriment?			
	A) Rolling a single die	Э	B) Tossing a sing	gle coin			
	C) Reading a book		D) Detection of blood group of a person				
ii)	 The sample space of an experiment consists of n points. Its power set will contain the following number of points 						
	A) n	B) 2n	C) n ²	D) 2 ⁿ			
iii)	If A and B are two mu	itually exclusive e	events then $P(A^C)$	_{DB}) is			
	A) P(B)	B) P(A)	C) P(A) + P(B)	D) P(A) . P(B)			
iv)	If a pair of dice is thro	wn then the proba	ability that the sum	of the two numbers			
	A) 1/36	B) 1/6	C) 1/12	D) 1/24			
v)	Which of the following	g is not an axiom	of probability mea	sure?			
	A) $P(\Omega) = 1$	B) P(44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	C) P(Ω) ≤1	D) P(A ∪ B)=P(A)+P(E	B), providedA ∩B=¢			
vi)	If A and B be any two			970			
	A) P(A).P(B/A)	B) P(B).P(A/B)	C) P(A)/P(B)	D) both (A) and (B)			

A - 141

			a a comple chace	Ω then	
vii)	If A and B be any two	events defined o	on a sample space	, ==	
	P(A/B) + P(A /B) is	B) 0	C) P(A)	D) P(B)	
	A) 1	X	5) 1 ()	*	
viii)	If A is event, then P(A		C) P(A)	D) Infinite number	
	A) 0	B) 1	C) P(A)	2,	16
2. At	tempt any two of the f	ollowing:	9		10
i)	Define the terms :				
	a) Random Experime	ent			
	b) Mutually Exclusive	e Events			
	c) Sample space				
	d) Power set			*	
ii)	For any two events A	and B prove tha	ľ		
	$0 \le P(A \cap B) \le P(A)$	$\leq P(A \cup B) \leq P(A \cup B)$	A) + P(B)		
iii)	State and Prove Baye	e's theorem.			
3. At	tempt any four from th	ne following :			16
i)	With usual notation p	orove that if A ⊂ E	then $P(A) \le P(B)$		
ii)	Suppose that A, B,	C are events su	ch that $P(A) = P($	B) = $P(C) = \frac{1}{4}$ and	
	$P(A \cap B) = P(B \cap C) = 0$	and $P(A \cap C) = 1$	/8. Then evaluate	Probability of at least	
	one of the event A, B				
iii)	If A, B, C are any thr			> 0 then show that	
	$P(A \cup B/C) = P(A/C)$			•	
iv)	Define Pairwise and r	nutual independe	ence for any three	events.	
	If A and B are indepen				
vi)	If 3 books are picked poems, a dictionary. I			5 Novels, 3 book of	
	a) 2 novels and 1 boo	- 100 m			
	b) A dictionary is sele				

Seat	
No.	

BSc.(Part - I) (Semester - I) Examination, 2013

STATISTICS (Paper - II) (Revised)

3	Elementary Pr	robability Theory	
1.	Sub. Co	ode: 55732	
	Date :Thursday, 02 - 05 - 2013 00 a.m. to 1.00 p.m.	Total Marks: 50	
Instruct	tions: 1) . All the questions are 2) Figures to the right in	compulsory. ndicate full marks.	
01) Cho	ose the most correct alternativ	ve: [10]]
a)	For any two events A and B	which one of the following is true?	
b)	i) Zero iii) P(A) / P (B),		
c) :	i) 1/4 iii) 1/2	ii) 2/9 iv) None of these	
d)	If $P(\overline{A}/A)$ is: i) 0 iii) 0.5	ii) 1 iv) 0.25	
e)	The sample space of an exp will contain points.	periment consists of 'n' points. Its power s	e
	i) 2 ⁿ	ii) 3 ⁿ	
	iii) 2^{n+1}	iv) None of these	

	- 23				
f)	P(A	A/B) + $P(\overline{A}/B)$ is:		9	. •
	i)	0	ii)	1 1	
	iii)	0.5	iv)	None of these	
g)	IfΛ	and B are independer	nt events, the	n P $(A \cap B)$ is	_·
•	i)	P(A)/P(B)		P(A) + P(B)	
	iii)	P(A) . P(B)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	None of these	
h)	IfΛ	is certain event and P			ty, P(A/B) is
e 8	i)	Zero	ii)	P (B)	
	iii)	one `	iv)	None of these	
i)		Probability of all possi	ble outcome of	of a random experime	ent is always
	i)	Infinity	ii)	Zero	
ř	iii)	One	iv)	None of these	
j)	The	definition of classical	-probability w	as originally given b	у
	i) ·	Demoivre	ii)	Laplace	L'AL DA
	iii) .	Pascal	· iv)	Von - Mises	
		Ty Fa Block			
Q2) Att	empt	any two of the followi	ng		[20]
a)		h usual notation, prove			
	i)	$P(A \cup B) = p(A) + P(B)$	$-P(\Lambda \cap B)$		÷
	ii)	$P(A \cup B) = p(A) + P(B)$ $P[(A \cap \overline{B}) \cup (\overline{A} \cap B)] = P(A)$	(A) + P(B) - 2B	$P(A \cap B)$	
Ñ.					,): 2
b)		ine pair wise independen			
:. ·		and C Let $\Omega = \{1,2,3,4\}$ ar Let $A=[1,2], B=[1,3], C$			
c)	State	e and prove Baye's the	orem.	il e	

Q3) Attempt any four of the following

[20]

a) For any two events A and B, show that

$$P(A \cap \overline{B}) = p(A) - P(A \cap B)$$

- b) If A and B are independent events then prove that A and \overline{B} are also independent.
- c) If $A \subset B$, then prove that,
 - i) P(B | A) = 1,
 - ii) $P(A) \leq P(B)$.
- d) If the events A, B, and C form a partition of the sample space Ω . And if 3P(A) = 2P(B) = P(C) find $P(A \cup B)$
- e) With usual notations, show that:
 - i) $P(\Phi)=0$
 - ii) $P(\overline{A}) = 1 P(A)$
- f) Λ coin and a die are tossed simultaneously,
 - i) Write a sample space for the above experiment.
 - ii) Find the probability of getting head and even number.

 $\mathcal{H}\mathcal{H}$

Seat No.							Nov 2014	
[]	B.S	c. ()	Part -	I) (Semester -	I) E	kam	ination, Nov.	
	B.Sc. (Part - I) (Semester - I) Examination, Nov 2014 STATISTICS (Paper-II) Elementary Probability Theory							
			\mathbf{E}	lementary Pr	obab	ility	Theory	
				Sub. Co	de: 5	9679	Total Marks :	50
D	Day and Date: Wednesday, 5-11-2014							
Time	.12.0	o no	on to 2.	00 p.m.				
Instru			1) A	Il questions are con igures to the right i	npulsor; ndicate	y. full m		0.1
	~ 1			correct alternativ	ve:		[1	0]
		ose t	ne mosi dom ex	correct alternative periment has	out	come	es.	
	a)	i)	only o			ii)	Olly two	
			. 1	4 4		iv)	at most two	
)	b)				r B but	not	both is denoted by	
		i)	(A∩I	B ^c)U(A ^c ∩B)			$A \cap B^c$	
		iii)	(A∩	B) ^c			$(A \cup B)$	
	c)	Wh	ich of t	he following state	ment is	s alw	ays true?	
	,	i)	A = A	. UΩ		ii)	$A=A\cap\Phi$	
		iii)	A=(A∩B)U(A∩B°)	iv)	$A = (A \cap B) \cap (A \cap B^{c})$	
	d)			y event has			•	
	-)	i)	only	one		n)	at least one	
		iii)	more	HILLII OLLO	-7.1.			
	e)	Po			ssible_	ii)	of a sample space.	
		1)	eleme			iv)		
	f)	iii) Ra	outco	probability is		,		8
	1)	i)	0 to			ii)	0to∞	
			-1 to			iv)	-∞t0∞	
	-1			then which of the	follov			
	g)				LOHOV			
		i)		< P(B)		ii)	The same of the sa	
		iii)	P(A)	= P(B)		iv)	none of these	

If odds in favor of an event A are 2:3 then P(A) =_____ h) 3/5ii) 2/5 1) iv) 0.3 0.2 iii) If A and B are exhaustive events then i) $A \cap B = A$ ii) $A \cup B = \Omega$ i) $A \cup B = B$ iv) If A and B are independent events then which of the followings is not true? $A \cap B = \Phi$ j) ii) $P(A \cap B^c) = P(A)P(B^c)$ $P(A^c \cap B^c) = P(A^c)P(B^c)$ i) iv) $P(A \cap B) = P(A) + P(B)$ $P(A^c \cap B) = P(A^c)P(B)$ [20] Q2) Attempt any two of the following. State and prove addition law of probability for two events A and B. State the result for three events. Give an axiomatic definition of probability. Show that conditional probability satisfies the axioms of probability. State Baye's theorem. In a lot of total production, contribution of products manufactured on machine M1, M2 and M3 is 45%, 30% and 25% respectively. Proportion of defectives due to machines M1, M2 and M3 are 5%, 7% and 10% respectively. What is probability that a product selected at random from such a lot is produced on machine M2 if it was found to be non-defective? [20] Q3) Attempt any four of the following. Explain through an example a concept of a partition of sample space by events. a) If two fair dice are tossed independently then what is probability that absolute difference between face values on first and second dice is not more than 3? If $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$, $A = \{\omega_1, \omega_2\}$, $B = \{\omega_2, \omega_3\}$ and $C = \{\omega_1, \omega_3\}$ c) then discuss about pair wise independence and mutual independence of these three events A,B and C. If A and B are independent events with P(A) = 1/2 and P(B) = 1/4 then d) obtain $P(A \cup B)$ and P(A/B).

e) If A and B are independent events then show that A^c and B^c are also independent events.

f) Write a power set in an experiment of tossing a coin.

N - 899Seat Total No. of Pages: 4 No. B.Sc. (Part - I) (Semester - I) Examination, April - 2015 STATISTICS (Paper - II) (Regular) **Elementary Probability Theory** Sub. Code: 59679 Total Marks: 50 Day and Date: Monday, 27-04-2015 Time: 12.00 noon to 2.00 p.m. All questions are compulsory. Instructions: 1) Figures to right indicate full marks. 2) [10] Q1) Choose the correct alternative: The probability that a leap year will have 53 Sundays is a) iv) $\frac{2}{366}$ If the sample space contains n elements then its power set contains b) elements. i) ii) 3^n 2niii) iv) n^2

Which of the following is not axiom of probability —

ii) $P(A) \ge 0$

c)

- iii) $P(\Omega) \le 1$
- iv) $P(A \cup B) = P(A) + P(B)$, provided $A \cap B = \phi$

Seat No.

Total No. of Pages: 4

B.Sc. (Part - I) (Semester - I) Examination, April - 2015

STATISTICS (Paper - II) (Regular)

Elementary Probability Theory

Sub. Code: 59679

Day and Date: Monday, 27-04-2015

Total Marks: 50

Time: 12.00 noon to 2.00 p.m.

Instructions: 1) All questions are compulsory.

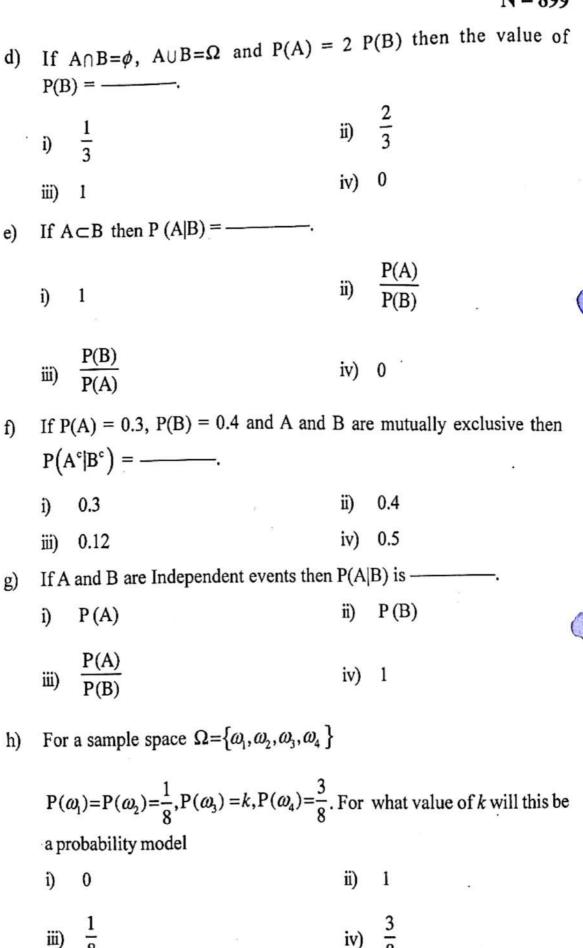
2) Figures to right indicate full marks.

QI) Choose the correct alternative:

[10]

- a) The probability that a leap year will have 53 Sundays is ———.
 - i) $\frac{1}{7}$

ii) $\frac{2}{7}$


iii) $\frac{2}{365}$

- iv) $\frac{2}{366}$
- b) If the sample space contains *n* elements then its power set contains elements.
 - i) 2ⁿ

ii) 3^n

iii) 2n

- iv) n^2
- Which of the following is not axiom of probability ———.
 - i) $P(\Omega)=1$
 - ii) P(A)≥0
 - iii) $P(\Omega) \le 1$
 - iv) $P(A \cup B) = P(A) + P(B)$, provided $A \cap B = \emptyset$

					N - 899
i)		Sym	bolic notation of occurance of	f both the	events A and B is ———.
		i)	$A \cup B$	ii)	$A \cap B$
		iii)	$(A \cup B)^{c}$	iv)	$(A \cap B)^{c}$
, j)		If A	and B are two independent ev	vents such	that $P(A)=P(B)=\frac{1}{2}$, then
		P(A	$A \cap B^{C}$) is ———.		
		i)	1	ii)	$\frac{1}{2}$
		iii)	$\frac{1}{4}$	iv)	0
Q2)	At a)	ъ	et any two of the following:	•5	[20]
		i)	Sample space.		
		ii)	Event.		
		iii			
		iv) Mutually exclusive events.		
		v) Exhaustive events.	Q	and prove addition theorem
	b	0	Exhaustive events. Give axiomatic definition of prob of probability for two events A		A R and C.
	c	(Define pairwise and mutual ind Suppose a box contains four ticon of the number on the ticket A_1 , A_2 and A_3 .	ependence ekets numb et A_i ($i = 1$) is 5. Discus	pered 554, 545, 455 and 444. $(2, 3)$ be the event that the i^{th} and ss the independence of events

Q3) Attempt any four of the following:

- a) If A and B are any two events defined on sample space Ω then prove that
 - i) $P(A|A^c)=0$.
 - ii) $P(A \cap B^C) = P(A) P(A \cap B)$.
- b) For any two events A and B, Show that $P(A \cap B) \ge P(A) + P(B) 1$.
- c) Define:
 - i) Partition of sample space.
 - ii) Baye's theorem.
- d) If A, B and C are three events defined on Ω with P(B) > 0 then show that $P[(A \cup C)|B] = P[A|B] + P[C|B] P[(A \cap C)|B]$.
- e) If P(A) = x, P(B) = y, $P(A \cap B) = z$ then express
 - i) $P(A \cup B)$.
 - ii) $P(A^c \cap B)$.
 - iii) $P(A^c \cap B^c)$.
 - iv) $P(A^c \cup B^c)$.
 - v) $P(A \cup B)^{c}$.
- f) If A and B are Independent events then show that A^c and B^c are also Independent.

Total No. of Pages :3

Seat	
No.	

B.Sc. (Part - I) (Semester - I) Examination, November - 2015

B.50	: (Pa	art -	STATISTIC	S (Pape	r - I	I) (New))	
			Elementary	Probab	oility	Theory	y	
Sub. Code: 59679 Total Marks: 50								
Day and D Time :12.0)ate :N 00 noo	n to (ay, 23 - 11 - 2015)2.00 p.m.				Total	Marks 10
Instruction	ns:	1) 2)	All questions are Figures to the rig	compulson ht indicate	ry. es full	marks.		
Q1) Cho	ose th	ne me	ost correct altern	ative.				[10]
a)	TC A	1	B are any two eve for at least one of	nts defin	ed on event	sample sp	oace Ω then occurs is	symbolic
	i)	A	∪B		ii)	$A \cap B$		
	iii)	A ^c	\cap B		iv)	$A\!\cap\! B^c$.*	
b)	The	prol	bability of sure e	event is _				
	i)	0			ii)	1		
	iii)	0.5			iv)	0.2		
c)	If sa of e	ample leme	e space of an expe ents in its power	eriment co	onsis	ts of 'n' poi	ints then, to	tal number
-	i)	2^n			ii)	3n		
	iii)	2n+	⊦ 1		iv)	3 ⁿ		
d)	If e		s A and B are i	ndepend	ent, t	hen which	h of the fo	ollowing is
*.	i)	P(A	$A^{c} \cap B = P(A^{c})$.P(B)				
	•••	-1	- DC) D(A)	n/nc)				

ii)
$$P(A \cap B^{C}) = P(A).P(B^{C})$$

iii)
$$P(A^{c} \cap B^{c}) = P(A^{c}).P(B^{c})$$

iv) all of these

e)	The condition for events A and B	to for	rm partition of sample spaceΩ
f)	 i) A∩B=Φ iii) both (i) and (ii) Which one of the following is no 	ii)	$A \cup B = \Omega$
	ii) Tossing a coin iii) Detection of blood group of iv) Throwing a ball in air	f a per	rson
g)	If A and B are mutually exclusive to	ve eve	ents then, $P(A/A \cup B)$ is equal
	i) $\frac{P(A)}{P(A)+P(B)}$	ii)	$\frac{P(A \cup B)}{P(A) + P(B)}$
	iii) $\frac{P(B)}{P(A)+P(B)}$	iv)	$\frac{P(A \cap B)}{P(A) + P(B)}$
h)	If $B \subset A$ then, $P(A/B)$ is		,
	i) 0	ii)	
	iii) $\frac{P(A)}{P(B)}$	iv)	$\frac{P(B)}{P(A)}$
i)	If $P(A) = \frac{1}{3}, P(B^{C}) = \frac{3}{4} \text{ and } P(A)$	∩B)=	$= \frac{1}{6} \text{ then } P(A^{C} \cap B) \text{ is } \underline{\hspace{1cm}}$
	i) $\frac{1}{6}$	ii)	$\frac{1}{12}$
	iii) $\frac{7}{12}$		$\frac{2}{12}$
j)	If A and B are mutually exclusive $P(A)=0.6$ then value of $P(B)$ is	usive	and exhaustive events, and if
	i) 0.6	ii)	0.4
	iii) 0	iv)	
		- 1	1000 MM

B- 1421

Q2) Attempt any two of the following:

[20]

- Define the following terms with suitable example a)
 - Sample space i)
 - Power set of Sample space ii)
 - iii) Complement of Event
 - iv) Intersection of events
 - Mutually exclusive events v)
- For any two events A and B, prove that b)

i)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

ii)
$$P(A/B) \ge \frac{P(A)+P(B)-1}{P(B)}$$

Define pairwise independence and mutual independence of events A,B c) and C. A fair coin is tossed twice and A,B and C are defined as follows

A:Tail on first toss

B:Tail on second toss

C:same face on both the tosses.

Show that A,B and C are pairwise independent but not mutually independent.

Q3) Attempt any four of the following:

[20]

Define a)

(

- Apriori probability i)
- ii) Axiomatic probability
- If $A \subset B$ then prove that, b)
 - P(B/A) = 1

- ii) $P(A) \le P(B)$
- If A and B are independent events with P(A)=0.25 and P(B)=0.3, find c) $P(A \cup B)$ and $P(A^c \cap B^c)$.
- A bag contains 8 white and 3 black balls. Two balls are drawn at random. Find the probability that both of them are white. d)
- With usual notations, prove that. e)
 - $P(\Phi) = 0$

- ii) $0 \le P(A) \le 1$
- If A and B are events defined on sample space Ω then, prove that f) $P(A^{C}/B)=1-P(A/B)$

Seat	 1
No.	

B.Sc. (Part-I) (Semester-I) Examination, October - 2017

*8	E	lem	entary		STAT				(Paj	per ·	- II)	*	
				S	ub. C	ode:	596	79					
Day and Time : 1					2017	350		8903			Total l	Mark	cs : 50
Instruction	ons:	1) 2)			are con e right i			mark	S.				
Q1) Che	oose 1	he m	ost com	rect al	ternati	ve:					3		[10]
a)	The	prob	ability	of a n	on-lea	p year	r will	have	53 N	Iond a	y is _		<u>_</u> .
¥ _	i)	17		Tree o	23:		ii)	$\frac{2}{7}$				9	z
	iii)	1					iv)	0					
b)			mple s				3 ele	men	s the	n its	power	set	P(Ω)
	i)	8			WY.	V.	ii)	6					
	iii)	3		3			iv)	9					
c)			vents A P(B) tl				ially 	excl	usive	and	exhau	ıstive	e and
	i)	$\frac{1}{3}$) i	ii)	$\frac{2}{3}$					
	iii)	1				(Ta	iv)	1					

- $\overline{2}$
- If $B \subset A$ then P(B/A) =d)
 - i)

ii)

iii)

	e)	Syn	mbolic notation of non-occurrence of both the events A and B is								
		i)	$A^{c} \cap B^{c}$	ii)	$(A \cup B)^{c}$ $A^{c} \cup B^{c}$						
		iii)	Both (i) and (ii)	iv)	$A^c \cup B^c$						
	f)	IfΛ	and B are independent events	then	$P(A/B) = \underline{\hspace{1cm}}.$						
	2	i)	P(B)	ii)	P(A)						
		iii)	0	iv)	$\frac{P(A)}{P(B)}$						
	g)		the events A, B, C form partition $k = 0.21$ then $k = 0.21$	of s	ample space and if $P(A) = 0.35$,						
9		i)	0.44	ii)	0.56						
		iii)	0.35	iv)	0.21						
	h)	If Ω then	is the sample space and A be a $P(\Omega/A) = $	iny e	vent defined on sample space Ω						
		i)	Zero	ii)	One						
		iii)	P(A)	iv)	$\frac{1}{P(A)}$						
	i)	ΙfΑ	A and B are independent events then								
		i)	$P(A \cap B) = P(A) \cdot P(B)$	ii)	P(A/B) = P(A)						
		iii)	P(B/A) = P(B)	iv)	All are true						
	j)	If $P(A) = 0.3$, $P(B) = 0.4$, $P(A \cup B) = 0.5$ then $P(A/B)$ is									
		i)	0.2	ii)	0.5						
		iii)	0.4	iv)	0.3						
O2)	Atte	mnt s	any two of the following:		(20)						
(2)	a)		ne the following terms:		[20]						
)	i)	Sample space.								
		ii)	Mutually exclusive events.								
		iii)	Equally likely events.		e 1						
		iv)	Conditional probability of Ag	given	В.						
		v)	Partition of sample space.								

- b) State and prove the Bayes' theorem.
- Define pairwise independence and mutual independence for three events A, B, C. Let $\Omega = \{1, 2, 3, 4\}$ and assume that each point has the probability $\frac{1}{4}$, Let A = $\{1, 2\}$, B = $\{1, 3\}$, C = $\{1, 4\}$. Examine independence of A, B and C.

Q3) Attempt any four of the following:

[20]

- a) State and prove addition theorem of probability.
- b) For any two events A and B show that $P(A \cap B) \ge P(A) + P(B) 1$.
- c) If $A \subset B$, prove that $P(A^{c} \cap B) = P(B) P(A)$ hence deduce that $P(A) \leq P(B)$.
- d) If A and B are mutually exclusive events then show that

i)
$$P(A/B) = 0$$

ii)
$$P(A/B^{C}) = \frac{P(A)}{1-P(B)}$$

- e) If A and B are independent events then show that A^C & B^C are also independent.
- f) The odds against A solving a certain problem are 8:6 and the odds in favour of B solving the same problem are 14:10. Then if both of them try, find the probability that problem would be solved.

P.T.O.

							T - 19
Seat No.						ר	Total No. of Pages : 4
В	S.Sc.			STAT	ISTIC	S	April - 2018
		Elem	entary	Probabil Sub. Co		eory (Paper 679	· - II)
			dnesday, 1 to 2.00 p.n	8 - 04 - 2018 n.	3		Total Marks: 50
Instruc	tions	1) 2) 3)	Figures t	ions are comp o the right ind lculator is all	dicate full	marks.	·
Q1) C	hoos	e the m	ost correc	t alternative): ·		[10]
a)	If bo	A and I	B are any nd B does	two events not occur	defined of	on Ω, then symed by	bolic notation for
	i)	(A	JB) ^c		ii)	$A \cap B$	
	iii)	Acr	∩B ^c		iv)	$A^{\mathbf{c}} \! \cup \! B^{\mathbf{c}}$	
b)	W	hich of	the follow	ving is an a	xiom of	orobability	
	i)	Ρ(Ω)=1		ii)	P(A)≥0	
	iii)	P(A	∪B)=P(A)+P(B)	iv)	Only (i) and (ii)
c)	If a	sample	e space co elements		ments, th	nen it's power s	set $IP(\Omega)$ contains
	i)	4			ii)	24	
	iii)	34			iv)	43	
d)	The	odds i	n favor of	an event A	are 10	5 then P(A ^C)	=,
	i)	1/3			ii)	9/15	
	iii)	1/2			ivi	2/3	

T - 19 e) The range of conditional probability is _____. i) 0 to 1 -1 to 1 iii) iv) None of these 0 to ∞ If $B \subset A$ then, P(A/B) is ___ f) i) 1 0 ii) iv) $\frac{P(B)}{P(A)}$ iii) $\frac{P(A)}{P(B)}$ A box contains 6 black and 4 white balls. Two balls are drawn one after g) other without replacement. The probability that both are black is _____. iv) $\frac{6}{25}$ If A and B are mutually exclusive events then, $P(A/A \cup B)$ is equal h) i) $\frac{P(A)}{P(A)+P(B)}$ ii) $\frac{P(A \cup B)}{P(A)+P(B)}$ $\frac{P(B)}{P(A)+P(B)}$ iv) $\frac{P(A \cap B)}{P(A) + P(B)}$ If A and B are any two events defined on a sample space, then probability i) of only event A occurs is given by ii) $P(A \cup B^c)$ i) iii) $1-P(A^c)-P(A\cap B)$ iv) $P(B)-P(A\cap B)$

j) If A and B are independent events, then P(A	$A^{C} \cap B$) is equal to
--	------------------------------

- $P(A^{c})[1-P(B^{c})]$
- ii) $1-P(A \cup B)^{c}$ iv) $P(B)-P(A \cup B)$

 $P(A) P(B^c)$

Q2) Attempt any two of the following:

[20]

- Define the following terms with suitable example
 - Sample space.
 - ii) Intersection of two events.
 - Apriori (classical) definition of probability. iii)
 - iv) Conditional probability.
 - v) Power set.
- A box contains four tickets with numbers 111, 121, 211, 221 and one b) ticket is drawn from the box at random. Let A_i (i = 1, 2, 3) be the event that ith digit of the number on the ticket drawn is 1. Discuss the independence of A₁, A₂ & A₃.
- Define the partition of sample space. State and prove the Baye's theorem. c)

Q3) Attempt any four of the following:

[20]

- With usual notation prove that a)
 - $P(A^{C}) = 1 P(A)$. i)

ii)
$$P(A|B) \ge \frac{P(A) + P(B) - 1}{P(B)}$$
.

- State and prove addition law of probability for two events A and B. b)
- Two urns identical in appearance contains respectively 3 white, 2 black c) and 2 white, 5 black balls. One urn is selected at random and a ball is drawn from it. What is the probability that it is a black ball?

- d) If P(A) = k, P(B) = 0.4 and $P(A \cup B) = 0.8$ find the value of k if
 - i) A and B are independent.
 - ii) A and B are mutually exclusive events.
- e) If A and B are independents events then show that A^c and B^c are also independent.
- f) If $P(A|B^c) > P(A)$ then show that P(A) > P(A|B).

