Shivaji University, Kolhapur

Question Bank for March 2022 (Summer) Examination

Subject Code : 80960

Subject Name : Real Analysis

Objective Questions

1) $m^*(\emptyset) =$ a) 1 b) $m^*(\{1\})$ c) 2 d) $m^*(\mathbb{R})$ 2) $m^*[C \cap (ℝ - C)]$ = a) 0 b) 1 c) $m^*(C)$ d) $m^*(\mathbb{R}-C)$ 3) Outer measure is countably _____ a) Sub-additive b) Additive c) Non-additive d) Translation variant 4) $m^*(A \cup B) = m^*(B)$ is true only if a) $m^*(A) = 0$ b) $m^*(B) = 0$ c) $m^*(A \cup B) = 0$ d) $m^*(A \cap B) = 0$ 5) $m^*(\mathbb{Q})=$ a) $m^*(\mathbb{N})$ b) ∞ c) 1 d) 2 6) A set E is said to be measurable, if for any set A, a) $m^*(A) = m^*(A \cap E) + m^*(A \cap E^c)$ b) $m^*(E) = m^*(A \cap E) + m^*(A \cap E^c)$ c) $m^*(E^c) = m^*(A \cap E) + m^*(A \cap E^c)$ d) $m^{*}(A) = m^{*}(A \cap E) \cup m^{*}(A \cap E^{c})$ 7) Any countable set is a) Measurable b) Non-measurable c) Open d) Closed

- 8) Finite union of measurable set is
 - a) Measurable
 - b) Non-measurable
 - c) Open
 - d) Closed
- 9) The set of all measurable set is
 - a) Measurable
 - b) Non-measurable
 - c) Algebra
 - d) Sigma Algebra

10) For measurable set E we say that a property holds almost everywhere on E if wherever the property fails has measure

- a) Zero
- b) Non-zero
- c) Unity
- d) Infinity
- 11) If E_1 and E_2 are measurable then
 - a) $m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2)$
 - b) $m(E_1 \cup E_2) \cup m(E_1 \cap E_2) = m(E_1) \cup m(E_2)$
 - c) $m(E_1 + E_2) + m(E_1 E_2) = m(E_1) + m(E_2)$
 - d) $m(E_1 \cup E_2) m(E_1 \cap E_2) = m(E_1) m(E_2)$
- 12) I) G_{δ} sets are open
 - II) F_{σ} Sets are open
 - a) Both I and II true
 - b) Only I is true
 - c) Only II is true
 - d) Both I and II are false
- 13) I) Set of all real numbers is measurable
 - II) Empty set is not measurable.
 - a) Both I and II true
 - b) Only I is true
 - c) Only II is true
 - d) Both I and II are false
- 14) $m([0,1] \cup [3,4]) =$
 - a) O
 - b) 1
 - c) 2
 - d) 3
- 15) Cantor set is
 - a) Closed and countable
 - b) Open and countable
 - c) Closed and uncountable
 - d) Open and uncountable

16) Difference between any two points in choice set CE is

- a) Rational
- b) Irrational

- c) Integer
- d) Complex

17) If f is defined on E of measure zero then

- a) f is always measurable
- b) f may or may not be measurable
- c) f is never measurable
- d) Measurability of f depends on definition of f

18) If f is a function defined on measurable E then f is measurable if inverse image of each open set under f is

- a) Open
- b) Closed
- c) Measurable
- d) Non-measurable

19) If f is a real valued function on E, for measurable subset D of E then f is measurable if and only if the restriction of f to _____ and _____ are measurable

- a) E and E-D
- b) E and E+D
- c) E+D and E-D
- d) None

20) If f and g are measurable functions then which of the following are not measurable

- a) f.g
- b) f+g
- c) f/g
- d) f-g

21) |f|=

- a) $f^+ + f^-$
- b) $f^+ f^-$
- c) $f^+ * f^-$
- d) f^+/f^-

22) I) The pointwise limit of continuous function may not be continuous

- II) The pointwise limit of Riemann integrable function is Riemann integrable
- a) Both I and II are true
- b) Only I is true
- c) Only II is true
- d) Both I and II are false

23) { $x \in \mathbb{R} | \chi_A(x) \ge c$ }= _____, if $0 \le c \le 1$

- a) A
- b) ℝ
- c) φ
- d) None of these
- 24) I) Non-measurable functions does not exist
 - II) Sum of two non-measurable functions is non-measurable
 - a) Both I and II are true
 - b) Only I is true
 - c) Only II is true
 - d) Both I and II are false

25) For any sets A and $B\chi_{A\cup B} = \chi_A + \chi_B$ is true if

a) $A \cup B = \phi$

- b) $A \cap B = \phi$
- c) A = B
- d) $A \subseteq B$
- 26) For any set A and B $\chi_{A \cup A^c} =$
 - a) $\chi_{\mathbb{R}}$
 - b) χ_A
 - c) χ_{A^c}
 - d) χ_φ

27) Which of the following is not Littlewoods's Principle

- a) Every measurable set is nearly finite union of intervals
- b) Every measurable function is nearly continuous
- c) Every pointwise convergence of sequence is nearly uniform convergence
- d) Every continuous function is nearly uniform continuous

28) Let $f(x) = 5\chi_{E_1} + 4\chi_{E_2}$ where E₁=[1,2] and E₂=[3,5] then integral of f is _____

- a) 13
- b) 9
- c) 14
- d) 12
- 29) Let f be bounded real valued function defined on set of finite measure E then the lower Lebesgue integral of f is given by_____
 - a) $\sup \left\{ \int_{E} \phi \mid \phi \text{ is simple and } \phi \leq f \right\}$
 - b) $\inf \left\{ \int_{F} \phi \mid \phi \text{ is simple and } \phi \leq f \right\}$
 - c) $\sup \left\{ \int_{F} \psi \mid \psi \text{ is simple and } f \leq \psi \right\}$
 - d) inf $\left\{ \int_{F} \psi | \psi \text{ is simple and } f \leq \psi \right\}$
- 30) Let f be bounded real valued function defined on set of finite measure E and A and B be disjoint measurable subsets of E then which of the following is true
 - a) $\int_{A\cup B} f = \int_A f + \int_B f$ b) $\int_{A\cup B} f \leq \int_A f + \int_B f$ c) $\int_{A\cup B} f \geq \int_A f + \int_B f$
 - d) $\int_{A\cup B} f \neq \int_A f + \int_B f$
- 31) Let f be bounded real valued function defined on set of finite measure E then choose the correct alternative

a)
$$\left| \int_{E} f \right| = \int_{E} |f|$$

b)
$$\left|\int_{E} f\right| \ge \int_{E} |f|$$

- c) $\left|\int_{E} f\right| \leq \int_{E} |f|$
- d) $\left| \int_{F} f \right| \neq \int_{F} |f|$
- 32) Let f be bounded real valued function defined on set of finite measure E and $A \le f \le B$ then choose the correct alternative
 - a) $A.m(E) \leq \int_{E} f \leq B.m(E)$

b)
$$A \leq \int_{E} f \leq B$$

- c) $A.m(E) \leq \int_{E} f \leq B$
- d) $A \leq \int_{E} f \leq B.m(E)$

33) Let f be bounded real valued function defined on set E of measure zero then $\int_E f =$

- a) 0
- b) 1
- c) 3
- d) 5

34) Let f be non-negative measurable function on E then for any $\lambda > 0$ choose the correct alternative

- a) $m\{x \in E | f(x) \ge \lambda\} \le \frac{1}{\lambda} \int_E f$
- b) $m\{x \in E | f(x) \ge 0\} \le \frac{1}{\lambda} \int_E f$
- c) $m\{x \in E | f(x) \ge \lambda\} \le \int_{E} f$
- d) $m\{x \in E | f(x) \ge 0\} \le \int_E f$

35) Let f and g are non-negative measurable function on E then

- $\int_{E} af + bg = a \int_{E} f + b \int_{E} g$ is true for
- a) All real numbers a and b
- b) a>0 and b>0
- c) a<0 and b<0
- d) a>0 and b<0

36) Let f be measurable function then consider

I) f^+ , f^- are integrable $\Rightarrow |f|$ is integrable

II)|f| is integrable $\Rightarrow f^+, f^-$ are integrable

- a) Both I and II are true
- b) Only I is true
- c) Only II is true
- d) Both I and II are false

37) A measurable function f is said to Lebesgueintegrable over set E if ______ is integrable over E.

- a) |f|
- b) —f
- c) f²
- d) -f²

38) A non-negative measurable function f is said to integrable over a measurable set E if ______

- a) $\int_{E} f < \infty$
- b) $\int_E f > 0$
- c) $\int_E f < 0$
- d) $\int_E f = \infty$

39) If *E* is the set contained in an open interval (a, b) and there is an increasing function on (a, b) that fails to be differentiable at each point in *E* then

a) $m^*(E) = 0$

- b) *E* is of infinite measure
- c) Eis non measurable set
- d) None of theses
- 40) If *f* is an increasing function on the closed, bounded interval[*a*, *b*] then *f*' is integrable over [*a*, *b*] and

a)
$$\int_{a}^{b} f' \leq f(b) - f(a)$$

b)
$$\int_{a}^{b} f' \leq f(a) - f(b)$$

c)
$$\int_{a}^{b} f' \geq f(b) - f(a)$$

d)
$$\int_{a}^{b} f' = f(b) - f(a)$$

- 41) If *f* is an increasing function on the closed, bounded interval[*a*, *b*] then *f* is of bounded variation on [*a*, *b*] and
 - a) TV(f) = f(b) f(a)b) TV(f) < f(b) - f(a)c) TV(f) > f(b) - f(a)d) TV(f) = f(a) - f(b)
- 42) If *f* is Lipschitz on \mathbb{R} and *g* be absolutely continuous on [a, b] then the composition *f* og is
 - a) absolutely continuous on [*a*, *b*]
 - b) need not be absolutely continuous on [*a*, *b*]
 - c) Uniformly continuous
 - d) Continuous

43) 11) I) l^{∞} is normed linear space.

II) l^1 is not normed linear space.

- a) Only I is true
- b) Only II is true
- c) Both I and II are true
- d) Both I and II are false

a) 1 b) 0 c) ∞ d) -1

45) For 1 , q the conjugate of pand any two positive numbers a and b

a)
$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

b) $ab \le \frac{a^p}{q} + \frac{b^q}{p}$
c) $ab \le \frac{a^p}{a} + \frac{b^q}{b}$
d) $ab \le \frac{a^p}{ap} + \frac{b^q}{qb}$

Descriptive Questions

1) Define Lebesgue outer measure and prove that i) $m^*(A) \le m^*(B)$ if $A \subseteq B$ ii) $m^*(A+x) = m^*(A)$

2) Give construction of cantor set C and prove that C is measurable.

3) Prove that the interval (a,∞) is measurable.

4) Define Lebesgue outer measure. Prove that outer measure is countably subadditive and hence show that $m^*(A) = 0$ if A is countable.

5) Prove that the collection of all measurable set is a σ - algebra.

6) Prove that Lebesgue measure is invariant under translation.

7) If f is measurable, prove that the set $\{x | f(x) = \alpha\}$ is measurable for all $\alpha \in \Box$.

8) Prove that a constant function with measurable domain is measurable.

9) If f and g are measurable functions defined on same domain then prove that 1) f+c 2) c.f 3) f+g 4) f.gare measurable where c is constant.

10) Prove that outer measure of an interval is its length.

11) Prove that for given any set A and $\in > 0$, there is an open set O such that $A \subset O$ and $m^*(O) \le m^*(A) + \in$. Further there exists a set $G \in G_{\delta}$ such that $A \subset G$ and $m^*(A) = m^*(G)$.

12) Define measurable set. Prove that if $m^*(E) = 0$ then E is measurable. Further every subset of E is measurable.

13) Let $\{E_n\}$ be countable collection of measurable sets then prove that $m\left(\bigcup_n E_n\right) = \lim_{n \to \infty} m\left(\bigcup_{k=1}^n E_k\right)$ Further if $\{E_n\}$ is an increasing sequence of measurable sets then $m\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} m\left(E_n\right).$

14) Define algebra of a sets and prove that given any collection C of subsets of X there is a smallest algebra containing C.

15) Let *E* is measurable set. Then prove that for given $\in > 0$, there is an open set $E \subset O$ such that $m^*(O-E) < \in$. Further prove that there is $G \in G_s$ such that $E \subset G$ and $m^*(G-E) = 0$

16) Let *E* is measurable set. Prove that there exists a Borel set B_1 and B_2 such that $B_1 \subseteq E \subseteq B_2$ and $m(B_1) = m(E) = m(B_2)$.

17) Prove that union of finite collection of measurable sets is measurable.

18) Let A be any set and $E_1, E_2, ..., E_n$ be a finite sequence of measurable sets then prove that $m * (A \cap [\bigcup_{k=1}^n E_k]) = \sum_{k=1}^n m * (A \cap E_k)$.

19) Given any set A is measurable and $\in > 0$, there is an open set O such that $A \subset O$ and $m^*(O-A) < \in$.

20) Let *E* be measurable set of finite outer measurable. Then prove that for each $\epsilon > 0$ there is a finite collection of open intervals $\{I_k\}_{k=1}^n$ for which $O = \bigcup_{k=1}^n I_k$ such that, $m * (E - O) + m * (O - E) < \epsilon$.

21) E_1 and E_2 are measurable, show that $m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2)$.

22) Let $\{I_k\}_{k=1}^{\infty}$ be a sequence of measurable sets then prove that $m(\bigcup_k E_k) \leq \sum_k E_k$. Also prove if E_k 's are pairwise disjoint then $m(\bigcup_k E_k) = \sum_k E_k$.

23) Let $\{A_k\}_{k=1}^{\infty}$ be a ascending sequence of measurable sets then prove that $m(\bigcup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} A_k$.

24) Let $\{B_k\}_{k=1}^{\infty}$ be a descending sequence of measurable sets and $m(B_1) < \infty$ then prove that $m(\bigcup_{k=1}^{\infty} B_k) = \lim_{k \to \infty} B_k$.

25) State and prove Borel-Cantelli Lemma.

26) Prove that a continuous function defined on measurable set is measurable. Is converse true? Justify with an example.

27) State and prove Egoroff's theorem.

28) Prove that there exists a non-measurable set in [0, 1].

29) Prove that a continuous function defined on measurable set is measurable.

30) Let *E* be a bounded measurable set of real number. Let Λ be a bounded countably infinite set of real numbers for which the collection $\{\lambda + E\}_{\lambda \in \Lambda}$ of translations of *E* is disjoint then prove that m(E) = 0.

31) Prove that any set E of real numbers with positive outer measure contains a subset which is not measurable.

32) Prove that a function f is measurable then the set $\{x | f(x) = c\}$ is measurable for all $c \in \mathbb{R}$.

33) Show that a function defined by, $f(x) = \begin{cases} x + 4, & \text{if } x \ge 2 \\ 8, & \text{if } x < 2 \end{cases}$ is measurable

34) Let f be a function defined on a measurable set E. Then prove that f is measurable if and only if for each open set O, the inverse image of O under f, $f^{-1}(O)$ is measurable.

35) Let f be an extended real valued function on E, then prove that if f is measurable on E on and f = g a.e. on E, then g is measurable also prove for a measurable subset D of E, f is measurable on E if and only if the restrictions of f to D and E - D are measurable.

36) Let f and g be measurable functions on E that are finite a.e. on E then prove that for any α and β , $\alpha f + \beta g$ is measurable and $f \cdot g$ is measurable on E.

37) Let g be a measurable real valued function defined on E and let f be a continuous real valued function defined on \mathbb{R} . Then the composition $f \circ g$ is a measurable function on E.

38) Prove that for a finite family $\{f_k\}_{k=1}^n$ of measurable functions with common domain E, the functions max $\{f_1, f_2, ..., f_n\}$ and min $\{f_1, f_2, ..., f_n\}$ are measurable functions.

39) Let $\{f_n\}$ be a sequence of measurable functions on E which converges point wise a.e. on E to a function f. Then prove that f is measurable.

40) Let A be any set. Prove that the characteristics function χ_A of A is measurable if an only if A is measurable.

41) Prove that the sum, product and difference of two simple functions are simple.

42) Let f be a measurable real valued functions on E. Assume that f is bounded on E and there is an integer $M \ge 0$ such that $|f| \le M$ on E. Then prove that for each $\varepsilon > 0$, there are simple functions ϕ_{ε} and ψ_{ε} defined on E such that $\phi_{\varepsilon} \le f \le \psi_{\varepsilon}$ and $0 \le \psi_{\varepsilon} - \phi_{\varepsilon} < \varepsilon$ on E.

43) Prove that an extended real valued function f on a measurable set E is measurable if and only if there is a sequence $\{\phi_n\}$ of simple functions on E which convergesd pointwise on E to f and $|\phi_n| \le |f|$ for all n, on E.

44) Let *E* be a measurable set of finite measure. Let $\{f_n\}$ be sequence of measurable functions on *E* that converges pointwise on *E* to a real valued function *f*. Then prove that for each $\eta > 0$ and $\delta > 0$, there is a measurable subset *A* of *E* and there is an index *N* such that $|f_n - f| < \eta$ on *A* for all $n \ge N$ and $m(E - A) < \delta$.

45) Let f be a simple function defined on a set E. Then prove that ever $\varepsilon > 0$, there is a continuous function g on \mathbb{R} and a closed set $F \subseteq E$ such that f = g on F and $m(E - F) < \varepsilon$.

46) State and prove Lusin theorem.

47) State and prove bounded convergence theorem.

48) Define Lebesgue integral of non-negative measurable function. Prove that if f and g are non-negative measurable functions, then

i)
$$\int_{E} c f = c \int_{E} f, \quad c > 0$$

ii)
$$\int_{E} (f+b) = \int_{E} f + \int_{E} g$$

49) State and prove Fatous lemma.

50) Define integrable function. Prove that if f and g are integrable function over E then

i) $f \le g$ a.e $\Rightarrow \int_E f \le \int_E g$
ii) If A and B are disjoint measurable sets contained in E , the
$\int_{A \cup B} f = \int_{A} f + \int_{B} f$

51) Prove that f is integrable if and only if |f| is integrable.

52) If f and g are bounded measurable functions defined on set E of finite measure. Prove the following

i)
$$\int_{E} (af + bg) = a \int_{E} f + b \int_{E} g$$

ii) $f = g$ a.e $\Rightarrow \int_{E} f = \int_{E} g$

53) State and prove monotone convergence theorem.

54) Let ϕ and ψ be simple functions which vanishes outside set of finite measure. Then prove that

i)
$$\int (a\phi + b\psi) = a\int \phi + b\int \psi$$

ii) $\phi \ge \psi$ a.e $\Rightarrow \int \phi \ge \int \psi$

55) Let $\{g_n\}$ be a sequence of integrable functions which converges to an integrable function g a.e. and let $\{f_n\}$ be sequence of measurable functions such that $|f_n| \le g_n$ for all n and $f_n \to f$ a.e. Then prove that if $\int_E g = \lim_E \int_E g_n$ then $\int_E f = \lim_E \int_E f_n$.

56) Let $\{E_i\}_{i=1}^n$ be a finite disjoint collection of measurable subsets of a set of finite measure *E*. If $\phi = \sum_{i=1}^n a_i \cdot \chi_{E_i}$, a_i 's are real numbers, $1 \le i \le n$ then prove that $\int_E \phi = \sum_{i=1}^n a_i \cdot m(E_i)$.

57) Let f be a bounded function defined on the closed bounded interval[a, b]. If f is Riemann integrable over[a, b], then prove that f is Lebesgue integrable over [a, b] and the two integrals are equal.

58) Let f be a bounded measurable function on a set of finite measure E. Then prove that f integrable over E.

59) State and prove Chebychev's inequality.

60) Let f be a non-negative measurable function on E then show that $\int_E f = 0$ if and only if f = 0 a.e. on E.

61) Let f be a non-negative measurable function on E. If A and B are disjoint measurable subsets of E then show that $\int_{A\cup B} f = \int_A f + \int_B f$. Also show that if E_0 is a subset of E of measure zero then $\int_E f = \int_{E-E_0} f$.

62) Let f and g be the two non-negative measurable functions. If f is integrable over E and g(x) < f(x) on E then show that g is also integrable and $\int_E f - g = \int_E f - \int_E g$.

63) Let f be a non-negative measurable function which is integrable over E. Show that for given $\epsilon > 0 \exists \delta > 0$ such that for every set $A \subseteq E$ with $m(E) < \delta$ we have $\int_{E} f < \epsilon$.

64) State and prove Beppo Levi's lemma.

65) State and prove Lebesgue Convergence Theorem.

66) State and prove General Lebesgue Dominated Convergence Theorem.

67) Let f be a bounded function on a set of finite measure E. Prove that f is Lebesgue integrable over E if and only if f is measurable.

68) Prove that a function f is of bounded variation over [a,b] if and only if f is difference of two monotone absolutely continuous real valued functions on [a,b].

69) State and prove Holders inquality.

70) Prove that the L^p space is complete.

71) Prove that a function F is an indefinite integral of some integrable function if and only if F is absolutely continuous on [a,b].

72) State and prove Minkowski inequality for $1 \le p \le \infty$.

73) Let f be an increasing function on the closed bounded interval [a, b]. Then prove that for each $\alpha > 0m * \{x \in (a, b) \mid \overline{D}f(x) \ge \alpha\} \le \frac{1}{\alpha}[f(b) - f(a)]$ and $m * \{x \in (a, b) \mid \overline{D}f(x) = \infty\} = 0.$

74) State and prove Lebesgue Theorem.

75) State and prove Jordan's Theorem.

76) State and prove Young's inequality.

77) Let f be a Lipschitz function on [a, b] show that f is of bounded variation on [a, b]. 78) If the function f is Lipschitz on a closed bounded interval[a, b] then show that f is absolutely continuous on [a, b].

79) Let f be the continuous on a closed bounded interval[a, b]. Then show that f is absolutely continuous on[a, b] if and only if the family of divided difference functions $\{\text{Diff}_h f\}_{0 \le h \le 1}$ is uniformly integrable over[a, b].

80) State and prove Fundamental Theorem of Integral Calculus for Lebesgue Integral.

81) Prove that a function f on a closed bounded interval [a, b] is absolutely continuous on [a, b] if and only if it is an indefinite integral over [a, b].

82) Let f be integral on a closed bounded interval[a, b]. Then prove that f(x) = 0 for almost all $x \in [a, b]$ if and only if $\int_{x_1}^{x_2} f = 0$ for all $(x_1, x_2) \subseteq [a, b]$.

83) Let f be integrable over the closed bounded interval[a, b]then $\frac{d}{dx} \left[\int_{a}^{x} f \right] = f(x)$ for almost all $x \in [a, b]$.

84) Define norm on a linear space and prove that $L^1(E)$ is a normed linear space.

85) Define norm on a linear space and prove that $L^{\infty}(E)$ is a normed linear space.

86) State and prove Cauchy Schwarz inequality.

87) Prove that every convergent sequence in a normed linear space X is Cauchy and Cauchy sequence in X is convergent if it has convergent subsequence.

89) Prove that every rapidly Cauchy sequence in a normed linear space X is Cauchy and every Cauchy sequence in X has rapidly Cauchy subsequence.

90) State and prove Riesz-Fischer theorem.