Seat No.

B.Sc. (Part -III) (Semester - VI) Examination, December - 2016 STATISTICS

Probability Theory (Paper - XIII) Sub. Code: 65864

Day and Date: Wednesday, 14-12-2016

Total Marks: 40

Time: 12.00 noon to 2.00 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

Ω 1)	Salaat	tha	correct	altar	antivo
$\mathbf{Q}\mathbf{I}$	SCICCI	uic	COLLECT	ancii	iauvc.

[8]

- a) If X_1 , X_2 , X_3 is a random sample (r. s.) from exponential distribution with $\theta = 3$ then prob. distribution of smallest order statistic is exponential with $\theta =$ ______.
 - i) 5

ii) 9

iii) 8

- iv) None of these
- b) Let X₁, X₂, X₃ be a r. s. from U(0, 1) then the distribution of sample range is
 - i) $\beta_2(2,2)$

ii) $\beta_2(1,n)$

iii) $\beta_1(2,2)$

iv) $\beta_1(1,n)$

c) If
$$P(X_n = 0) = 1 - \frac{1}{n}$$
, $P(X_n = 1) = \frac{1}{n}$, $n = 1, 2$ _____ then

i) $X_n \xrightarrow{2} 1$

ii) $X_n \xrightarrow{2} 2$

iii) $X_n \xrightarrow{2} 0$

iv) None of these

- d) A sequence of random variables $\{X_n, n \ge 1\}$ is said to converge in distribution function to X if
 - i) $\lim_{n\to\infty} F_n(X) = 1$

ii) $\lim_{n\to\infty} F(X) = 0$

iii) $\lim_{n\to\infty} F_n(X) = 0$

- iv) None of these
- e) In a discrete Markov chain a state j is said to be accessible from state i if
 - $i) P_{ij}^{(n)} > 0$

ii) $f_{ii}^{(n)} > 0$

iii) $P_{ij}^{(n)} > 0$

- iv) None of these
- f) A state of Markov chain is said to be Ergodic if it is
- i) null persistent and aperiodic
 - ii) non-null persistent and aperiodic
 - iii) null persistent and periodic
 - iv) non-null persistent and periodic
 - g) Traffic intensity in queuing model with arrival rate λ and service rate μ is
 - i) $\frac{\lambda}{\mu}$

ii) $\frac{\lambda}{\lambda + \mu}$

iii) $\frac{\mu}{\lambda}$

- iv) None of these
- h) The probability distribution of service time in queuing system is
 - i) Exponential

ii) Normal

iii) Poisson

iv) Geometric

Q2) Attempt any two of the following:

[16]

- a) Define order statistics for a r. s. of size n drawn from a continuous distribution. Let $X_1, X_2, ---- X_n$ be a r.s. drawn from U(0,1) then obtain the distribution of
 - i) minimum order statistic
 - ii) maximum order statistic
- b) Let $\{X_n, n \ge 1\}$ be a Markov chain with states 0, 1, 2 and transition probability matrix (t.p.m)

$$\begin{bmatrix} \frac{3}{4} & \frac{1}{4} & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & \frac{3}{4} & \frac{1}{4} \end{bmatrix}$$

and initial prob. distⁿ. is $P[X_0 = i] = \frac{1}{3}$, i = 0,1,2 then find

i)
$$P[X_2 = 2, X_1 = 1/X_0 = 2]$$

ii)
$$P[X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2]$$

iii)
$$P[X_1 = 1]$$

c) State and prove weak law of large numbers for i.i.d. random variables with finite variance.

Q3) Attempt any four of the following:

[16]

a) Obtain distribution function of i^{th} order statistic.

- b) Let $X_1, X_2, ---- X_n$ be a r.s. drawn from $f(x) = \overline{e}^{(x-\theta)}$, $x \ge \theta, \theta > 0$ show that $X_{(1)} \xrightarrow{P} \theta$.
- c) Define the terms
 - i) Recurrent state
 - ii) Transient state
- d) What is queue? Explain essential features of queuing system.
- e) Explain queuing model M/M/1 using FCFS queue discipline.
- f) Let \overline{X}_n be the mean of a r.s. of size 100 drawn from $\chi^2_{50d.f}$. Compute an approximate value of $P(49 < \overline{X}_n < 51)$ [Given $\Phi(1) = 0.84134$].

888