Seat No. Total No. of Pages: 3

B.Sc. (Part - III) (Semester - VI) Examination, December - 2016 STATISTICS

Statistical Inference - II (Paper - XIV)

Sub. Code: 65865

Day and Date: Thursday, 15-12-2016

Total Marks: 40

Time: 12.00 noon to 2.00 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- Q1) Choose correct alternative from each of the following:

[8]

- a) Let X_1, X_2, X_n be a random sample of size n taken from a population having density $f_X(x, \theta)$. A function of (X_1, X_2, X_n) and θ whose distribution does not depend on θ is known as
 - i) Test statistic

- ii) Pivotal quantity
- iii) Sufficient statistic
- iv) Distribution free test statistic
- b) Which of the following is 99% confidence interval for the parameter μ of N (μ, σ^2) population based on a sample of size n.
 - i) $\overline{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}$

ii) $\overline{X} \pm 2.58 \frac{\sigma}{\sqrt{n}}$

iii) $\overline{X} \pm 1.64 \frac{\sigma}{\sqrt{n}}$

- iv) $\overline{X} \pm 1.58 \frac{\sigma}{\sqrt{n}}$
- c) The likelihood ratio test statistic for testing $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$ based on a sample of size n taken from $N(\mu, \sigma^2)$ population follows
 - i) t_{n-1} distribution
- ii) F distribution
- iii) Chisquare distribution
- iv) Normal distribution

- d) If [X > 0.5] is the critical region for testing H_0 : $\theta = 1$ against H_1 : $\theta = 2$ based on a single observation having exponential distribution with mean θ , the probability of type I error is
 - i) 0.4

ii) 0.6

iii) 0.8

- iv) 0.5
- e) The Best Critical Region of size α for testing H_0 : $\theta = \theta_0$ against H_1 : $\theta = \theta_1 > \theta_0$ when a sample of size n is taken from $N(\theta, \sigma^2)$ population (σ being known) is
 - i) $\overline{X} > \theta_0 + \frac{\sigma}{\sqrt{n}} z_\alpha$
- ii) $\overline{X} < \theta_0 + \frac{\sigma}{\sqrt{n}} z_\alpha$
- iii) $\overline{X} > \theta_1 + \frac{\sigma}{\sqrt{n}} z_{\alpha}$
- $iv) \quad \overline{X} > \theta_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}$
- f) In SPRT of strength (α, β) , λ_m denoting the likelihood ratio, m being sample size, H_0 is rejected if
 - i) $\lambda_m \geq \frac{1-\beta}{\alpha}$

ii) $\lambda_m \leq \frac{1-\beta}{\alpha}$

iii) $\lambda_m \leq \frac{\beta}{1-\alpha}$

- iv) $\lambda_m \geq \frac{\beta}{1-\alpha}$
- g) The Win Lose record of a certain basketball team for their last 15 consecutive games is as follows.

WWLLWWLWWWLWLLW

The total number of runs in the sequence is

i) 8

ii) '

iii) 9

- iv) 6
- h) A random sample of size 10 is taken from a population having distribution function F (x). To test H₀: F (72) = $\frac{1}{2}$ against H₁: F (72) > $\frac{1}{2}$ we use
 - i) Run test

ii) Median test

iii) Sign test

iv) Mann-Whitney U test

Q2) Attempt any two of the following:

- a) State and prove Neyman-Pearson Lemma.
- b) Define most powerful test. Obtain $100 (1 \alpha)\%$ confidence interval for the parameter μ of normal distribution $N(\mu, \sigma^2)$ when
 - i) σ^2 is known
 - ii) σ^2 is unknown
- c) Explain the procedure for Run test for one sample and Mann-Whitney U test.

Q3) Attempt any four of the following:

[16]

- a) Explain the procedure Wilcoxon's Signed Rank test for one sample.
- b) Obtain 90% confidence interval a population proportion based on a large sample of size *n*.
- Define Likelihood Ratio test and SPRT. State the properties of L R
 Test.
- d) Obtain $100 (1 \alpha)\%$ confidence interval for the difference between two means $(\mu_1 \mu_2)$ based on a sample of size n taken from Bivariate normal population with parameters $(\mu_1, \mu_2, \rho, \sigma_1^2, \sigma_2^2)$.
- e) Construct SPRT of strength (α, β) for testing H_0 : $\theta = \theta_0$ against H_1 : $\theta = \theta_1$, where θ is the parameter of exponential distribution.
- f) Let X_1, X_2, \dots, X_n be a random sample taken from a population having Bernoulli distribution with paramer P. Obtain BCR of size α for testing $H_0: P = \frac{1}{2}$ against $H_1: P = \frac{1}{3}$.

G250G250