

In-situ construction of BiVO₄/N-Doped carbon composite for visible-light-driven degradation of methylene blue and Tetracycline hydrochloride

Nitin A. Tupsamindar^{1,2} · Arun S. Chopade^{1,3} · Sagar A. Chaudhari¹ · Abhijit N. Kadam⁴ · Samadhan P. Pawar⁵ · Sandip R. Sabale⁶ · Avinash A. Kadam⁷ · Mohaseen S. Tamboli⁸ · Sadaf Jamal Gilani⁹ · Vaishali Patil¹⁰ · Dattakumar S. Mhamane¹¹ · Vijaykumar P. Ubale¹² · Mukund G. Mali¹

Received: 7 April 2025 / Accepted: 30 June 2025
© Qatar University and Springer Nature Switzerland AG 2025

Abstract

Water pollution from industrial effluents, particularly organic dyes and pharmaceuticals, is a major environmental issue. In this study, BiVO₄ based photocatalysts were modified in situ with nitrogen-doped carbon (NC) *via* metal–organic coordination using 2-methylimidazole, yielding BiVO₄ and BiVO₄@NC under air and nitrogen environment, respectively. These materials were systematically characterized by means of XRD, FTIR, XPS, TEM-EDS, FESEM, PL, and UV–vis spectroscopy. Among the tested samples, BiVO₄@NC showed the highest photocatalytic performance, achieving 94% degradation of methylene blue in 120 min and 92% degradation of tetracycline hydrochloride in 60 min under visible light. This marks a significant improvement compared to bare BiVO₄, which achieved only 72% and 70% degradation of MB and TC, respectively. Furthermore, BiVO₄@NC demonstrated excellent recyclability over five cycles and strong resistance to interfering ions. The enhanced performance is attributed to N-doped carbon, which improved optical absorption, reduced band gap, and facilitated charge carrier separation.

Keywords Metal organic framework-derived · Photocatalysis · Methylene blue · Tetracycline · Hydroxyl radical

 Dattakumar S. Mhamane
dkumar.mhamane@gmail.com

 Vijaykumar P. Ubale
vpubale@gmail.com

 Mukund G. Mali
mukundgmal@gmail.com

¹ School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur 413 255, Maharashtra, India

² Department of Chemistry, Venkatesh Mahajan Senior College, Osmanabad 413501, Maharashtra, India

³ Department of Chemistry Pratapsinh Mohite-Patil Mahavidyalaya, Karmala 413203, Maharashtra, India

⁴ Department of Chemistry, John Wilson Education Society's, Wilson College (Autonomous), Mumbai 400007, Maharashtra, India

⁵ Department of Chemistry, Rajarshi Chhatrapati Shahu College Kolhapur, 416003 Maharashtra, India

⁶ Department of Chemistry, Jaysingpur College, Jaysingpur 416101, MH, India

⁷ School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Loni Kalbhor, Pune 412201, Maharashtra, India

⁸ Korea Institute of Energy Technology (KENTECH), 21 KENTECH-gil, Naju 58330, Jeollanam-do, Republic of Korea

⁹ Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia

¹⁰ Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune 411 048, Maharashtra, India

¹¹ Department of Chemistry, Sangameswar College (Autonomous), Solapur 413 001, Maharashtra, India

¹² Department of Chemistry, D.B.F. Dayanand College of Arts and Science, Solapur 413002, Maharashtra, India