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Abstract
The inverse relationship between the linear increase in skewness parameter s and the domain’s
width of the order of skewness n plays a vital role in both critical beam radius and propagation
dynamics of skew-cosh-Gaussian (skew-chG) laser beams. The interplay between the skewness
parameter s and the order of skewness n is explored analytically and graphically in the current
study to unveil the complexity of the propagation dynamics of the skew-chG laser beam.
Naturally, the intensity’s complexity considerably affects the dielectric constant of the medium.
Basically, the nonlinearity in the dielectric function of collisional plasma is attributed to the
non-uniform heating of energy carriers along the wavefront of the laser beam, which becomes
important and is used in the current study. By following Akhmanov’s parabolic wave equation
approach under Wentzel–Kramers–Brillouin and paraxial approximations, the nonlinear
differential equations are set up for the beam width parameters f 1 and f 2 and solved
numerically. The present work analytically investigates the domains of the order n of skew-chG
laser beams for a given set of skewness parameter s to investigate their effects on the
self-focusing and defocusing of skew-chG laser beams. The critical curve also gets affected
significantly due to the choice of domains for n. Finally, the numerical results are presented in
the form of graphs and discussed in this study.

Keywords: skew-cosh-Gaussian, skewness parameters, self-focusing/defocusing,
collisional plasma

1. Introduction

Nonlinear refraction enables the laser to self-focus and self-
guide across large distances in the plasma, thereby account-
ing for the diffraction divergence. A great number of experi-
mental and theoretical investigations have been conducted on
the self-focusing of laser beams [1, 2]. Self-focusing and defo-
cusing of laser beams in the nonlinear media have been studied
by Akhmanov et al [1]; moreover, Sodha et al [2] conducted

∗
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its pedagogical straightforward extension to plasmas. Due to
significant advances in laser technology, lasers have become
the most powerful coherent source of radiation. The field of
high-power laser plasma has seen phenomenal growth after
the increase in laser power. The laser-plasma interactions have
miscellaneous applications in higher harmonic generation [3],
laser acceleration of electrons and ions [4], laser ablation of
materials [5], inertial confinement fusion [6], laser coupling
to graphene plasmonics [7], x-ray lasers [8], stimulated Raman
scattering [9, 10], and self-phase modulation [11], etc.

Basically, the collisional plasma dynamics is dominated
by local collisional forces rather than collective actions in it.
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An important factor in the field-dependent dielectric function
in the collisional plasma is the non-uniform rearrangement
of carriers caused by the heterogeneous heating of carriers
because of transverse changes in the electric field along its
wavefront. A laser beam propagating with an inhomogeneous
intensity distribution in the plasma heats electrons, leading to
a temperature gradient. The non-uniform heating of the car-
rier mechanism is observed to be effective rather than the
ponderomotive force mechanism in a steady state. As a con-
sequence of the self-induced inhomogeneity in the dielectric
function of the plasma, the effective dielectric function mod-
ifies remarkably, and the self-focusing and defocusing of the
beams are produced [12–14]. Recently, some laser beam pro-
files have been explored for the studies of self-focusing and
defocusing, such as Gaussian beams [15–17], cosh-Gaussian
(ChG) beams [18–21], Hermite-ChG beams [22–25], among
others, in collisional plasmas. These techniques have attracted
the attention of many research scholars. In contrast, some of
the studies have been conducted on the self-focusing of quad-
ruple Gaussian [26], q-Gaussian [27–30], Laguerre Gaussian
[31, 32], Bessel–Gaussian [33], skew-chG [34, 35], and Airy–
Gaussian [36].

Recently, Singh et al [37] studied the laser-plasma inter-
actions where a skew-chG laser beam can create Wakefield.
They have reported that for the generation of terahertz (THz)
radiation, the order n and skewness parameters s of skew-chG
laser beams are found to be very efficient in weakly ionized
and collisional plasmas. Malik [38] has studied a generalized
treatment of the skew-chG laser for bifocal THz radiation and
reported that the propagation of skew-chG laser beams in col-
lisional plasma is efficient for achieving unifocal bi-focal or
unifocal THz radiation by the appropriate selection of skew-
ness parameter s and order n of the skew-chG laser beam. In
the present work, we have explored the electric field profile
of a skew-chG laser beam under the symmetry condition in
two transverse directions. For the given skewness parameter
s = 0.5, 1.0, 1.5, 2.0 [38], the domains of order n are invest-
igated analytically as they play a key role in determining the
intensity profile of the laser beams. It has also been emphas-
ized that the skewness parameter s and order n of the skew-
chG laser beams play a crucial role in both the critical beam
radius and the propagation dynamics of the skew-chG laser
beams. Moreover, the analytical investigation in the present
study focuses on the in-depth exploration of order n and skew-
ness parameter s of skew-chG laser beams. More precisely, the
present work analytically investigates the domains of the order
n of a skew-chG laser beam for a given set of skewness para-
meter s to examine its effects on the propagation dynamics of
skew-chG laser beams. By following Akhmanov’s parabolic
wave equation approach under Wentzel–Kramers–Brillouin
(WKB) and paraxial approximations. Eventually, the beam-
width parameter (BWP) f 1 and f 2 differential equations are
set up and solved numerically and the obtained numerical res-
ults are presented in the form of graphs and discussed at the
end.

2. Theoretical formulation

The propagation of skew-chG laser beams with angular fre-
quency ω is considered in homogeneous plasma along the z
axis. The initial electric field profile for skew-chG laser beams
in Cartesian co-ordinate system can be written as:

E(x,y,z) = E0 cosh
n

(
sx x
r0

)
e
−
(

x2

r20

)
coshm

(
sy y
r0

)
e
−
(

y2

r20

)

(1)

where sx and sy are skewness parameters along the x- and y-
directions, respectively, n and m are order of skewness, r0 is
the initial beam radius, E0 is the maximum amplitude at the
central position (x = y = z = 0). For convenience, we can
express equation (1) as follows:
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The propagation of skew-chG laser beams in the homogen-
eous plasma is described by a dielectric function which can
generally be written as [2]:

ε= ε0 +ϕ (EE∗) , (3)

where ε0 and ϕ ( EE∗) represent the linear and nonlinear
parts of dielectric function ε, and ε0 = 1− (ω2

p/ω
2), where

ωp is the plasma electron frequency in the absence of the
beam and ωp =

√
4π ne e2/m , where and e are the density of

plasma electrons in the absence of the laser beam, and charge
on electrons, respectively. The term ϕ (EE∗) represents a
field-dependent dielectric function for collisional plasma [14]:

ϕ (EE∗) =
ω2
p

ω2

[
α EE∗

2+ α EE∗

]
, (4)

with

α=

(
e2M

6 kBT0ω2m2

)
,

where kB, M, n and T0 are the Boltzmann constant, the ion
mass, the rest mass of the electron, and the plasma temperat-
ure, respectively.

The wave equation governing the electric field of the laser
beam, having dielectric function ε of the plasma given by
equation (3), can be expressed as follows:

∇2E− ε

c2
∂2E
∂t2

= 0. (5)
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In WKB approximation, the solution of equation (5) can be
written as follows:

E= A(x,y,z)exp [i(ωt− kz)] . (6)

Substituting ε and E from equations (3) and (6) in
equation (5) and solving, one can obtain:

∂2A
∂x2

+
∂2A
∂y2

+
ω2

c2
ϕ ( EE∗) A= 2ik

∂A
∂z

. (7)

To solve parabolic wave equation (7), we now express
A(x,y,z) as follows:

A(x,y,z) = A0 (x,y,z)exp [−ikS(x,y,z)] (8)

where A0 (x,y,z) and S(x,y,z) are the real functions of x, y
and z. Substituting for A from equation (8) in equation (7) and
equating real and imaginary parts, we get:
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Following the approach given by Akhmanov et al [1] and
Sodha et al [2], the solutions of the equations (9) and (10) are
expressed as follows:
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(12)

It should be noted that β1 (z) = (1/f1)(∂f1 (z)/∂z),
β2 (z) = (1/f2)(∂f2 (z)/∂z) where β1 (z) and β2 (z) are the
inverse of the radius of curvature of the beam along the x and
y directions respectively, ϕ (z) is the axial phase, f1 (z) and
f2 (z) are dimensionless BWP along the x and y directions of
the beam, respectively.

Substituting equations (11) and (12) in equation (9), we
have obtained differential equations for BWP f1 and f2 of
skew-chG laser beams as follows:

d2f1
dξ 2

=
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)2
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where ξ = z/Rd is the dimensionless distance of propaga-
tion and Rd = k r0 2 is known as Rayleigh length with k=
(ω/c)

√
ε0 is the wave number. Now, we have made analyt-

ical investigation by considering the same skewness paramet-
ers sx = sy = s and the order of skewness is also the same, that
is n = m of the skew-chG laser beam along x and y directions,
respectively.

Equations (13) and (14) are nonlinear, coupled second-
order differential equations, which show the variation of the
BWP f1 and f2 with respect to the dimensionless distance of
propagation ξ . The first term on the right-hand side of these
equations leads to the diffraction divergence, which is respons-
ible for defocusing and the second term leads to convergence
resulting from the collisional nonlinearity, which is respons-
ible for self-focusing. When the self-focusing and diffraction
of a laser beam are perfectly balanced, the beam becomes self-
trapped.

3. Results and discussion

By imposing initial conditions on equations (13) and (14),
f1 (ξ = 0) = f2 (ξ = 0) = 1 and d2f1/dξ 2 = d2f2 /dξ 2 = 0
under symmetry considerations, such as sx = sy = s and n=m
along x and y directions, we obtain an expression for the
dimensionless critical initial beam radius ρ0 = ωp r0 / c in
terms of the critical intensity parameter p= αE2

0 as follows:

ρ0 =

√
(n2s4 − ns4 − 4 n s2 + 4) (p+ 2)2

2 p (2− ns2)
. (15)

Now equation (15) can also be written as:

1
ρ02

=
2 p

(
2− ns2

)
(n2s4 − ns4 − 4 n s2 + 4) (p+ 2)2

. (16)
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Figure 1. Domains of order n of skew-chG laser beam with different values of skewness parameter s.

For the maximum value of right hand side, we can rewrite
equation (16) as:

d
dp

[
2 p

(
2− ns2

)
(n2s4 − ns4 − 4 n s2 + 4) (p+ 2)2

]
= 0. (17)

By solving equation (17), we obtain:

p= 2. (18)

Substituting the value of p into equation (15), we obtain:

ρ0min =
4
(
n2s4 − ns4 − 4 n s2 + 4

)
(2− ns2)

. (19)

Equation (19) can be used for the further analytical and
graphical explorations. The expression of ρ0min is purely
dependent on skewness parameter s and order of skewness
n. Figure 1 illustrates the variation of ρ0min against the order
of skewness n for a given set of values of skewness para-
meters s (0.5, 1.0, 1.5, and 2.0) [38] and highlights the
domains of order of skewness n. The subsequent analyt-
ical investigation using equation (19) under the condition
ρ0min > 0 results in four different domains corresponding to
each value of skewness parameter s. The reconfirmation of
the domains of order of skewness n is quite evident from
figure 1.

It is a well known fact that the critical curve investiga-
tion results in a clear discrimination of above critical curve
(supercritical region) and below critical curve (subcritical
region). These two regions are always separated by critical
curve. Thus, using equation (15), figure 2 gives four sets
of plots of critical curves where each set corresponds to a
given value of s. In those sets, in general, it is observed
that with increase in the value of n, the critical curve shifts
downward and saturates at its minimum value. For a point
(ρ0, p0) in the supercritical region, self-focusing is observed.
For a point (ρ0, p0) in the subcritical region, defocusing
is observed. Naturally, however, for any value of (ρ0, p0)
on the critical curve, self-trapping of the skew-chG laser
beam is observed, which is obviously self-explanatory. Finally,
the coupled differential equations (13) and (14) are solved
numerically for the values of ρ0 = 3.0000 (supercritical
region), ρ0 = 0.5550 (subcritical region) and p0 = 2.0000,
which are consistent with all the plots of critical curves in
figure 2.

In figure 3, we have shown explicitly the variation of
BWP f 1 and f 2 as a function of dimensionless propagation
distance ξ for various domains of the order n of skew-chG
laser beam (table 1) along with ρ0 = 3.0000 and 0.5550 and
p0 = 2.0000. The variations in the BWP f 1 and f 2 with respect
to the domains of n are clearly evident in figure 3. We have
selected two distinct values of ρ0 = 3.0000 and 0.5550 with
p0 = 2.0000, which are present in the supercritical region
and in the subcritical region, respectively. The self-focusing

4
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Figure 2. Critical curves for different values of skewness parameters s and same order of skewness (symmetry) n = m (a) s = 0.5,
(b) s = 1.0, (c) s = 1.5, and (d) s = 2.0.

(ρ0 = 3.0000 and p0 = 2.0000) and the defocusing of the
laser beam (ρ0 = 0.5550 with p0 = 2.0000) with respect to the
domains are (table 1) are observed. For any value of (ρ0, p0)
on the critical curve, the self-trapping of the skew-chG laser
beam is obviously self-explanatory. In addition, for a given

skewness parameter s with respect to domains of the order of
the skew-chG laser beam n the rate of defocusing decreases.
Figure 3 represents that when the domains of n increase along
with s, the self-focusing length decreases, resulting in oscillat-
ory self-focusing.
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Figure 3. Variation of BWP f 1 and f 2 with ξ with p0 = 2.0000 for distinct skewness parameters s and domains of order n of skew-chG
laser beam for ρ0 = 3.0000 (self-focusing), ρ0 = 0.5550 (defocusing), (a) s = 0.5 and 0 < n < 5.6277, (b) s = 1.0 and 0 < n < 1.0000, (c)
s = 1.5 and 0 < n < 0.3217 and s = 2.0 and 0 < n < 0.1339.

Table 1. Domains of order n of skew-chG laser beam for a given set of skewness parameter s.

s = 0.5 s = 1.0 s = 1.5 s = 2.0

0 < n < 5.6277 0 < n < 1.0000 0 < n < 0.3217 0 < n < 0.1339

4. Conclusions

We have explored analytically the domains of the order n of a
skew-chG laser beam for a set of skewness parameter s for
three delegate characters of beams like self-focusing, defo-
cusing, and self-trapping in homogeneous collisional plasma.
Nonlinear and coupled differential equations in transverse
dimensions of the beams are established using the parabolic
wave equation approach under WKB and paraxial approxima-
tions. Due to the symmetry in two transverse directions n=m,
BWP f 1 and f 2 show perfect synchronization. It is also evident

from our study that the critical curves also get affected signific-
antly due to the choice of domain for n. The analytical invest-
igation provides a precise quantitative picture regarding the
laser beam propagation. The domain of order n of skew-chG
laser beams decreases with an increase in skewness parameter
s. In the subcritical region, for a given value of skewness para-
meter s, the rate of defocusing decreases with increase in the
order n of the skew-chG laser beam. In the supercritical region,
for a given value of the skewness parameter s, enhanced self-
focusing is observed with increase in the order n of the skew-
chG laser beam.
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